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Abstract 

Vegetation structure can support biodiversity by creating a variety of microclimates and microhabitats 

that contribute to food and shelter for different species. For this reason, biodiversity and wildlife habitat 

assessments often require measurements of vegetation structure. Traditional methods for measuring 

the structure and distribution of vegetation are time-consuming and often limited to small areas or a 

subset of the landscape. Light detection and ranging (LiDAR) is an alternative remote sensing method 

for collecting three dimensional information on vegetation structure and other landscape features 

across wide areas. For the first time, we used multi-platform LiDAR data from a terrestrial sensor 

(TLS) and an unmanned aerial vehicle (ULS) to investigate the relationship between vegetation 

structure and the diversity and abundance of birds, reptiles and amphibians in a critically endangered 

grassy woodland ecosystem. 

The first Chapter of this thesis involves TLS and ULS data collection methods, post-processing steps 

and exploratory data analysis. I calculated a number of variables to characterise the three-dimensional 

structure of vegetation across four structurally different, one hectare sites and compared the values of 

the TLS and ULS derived variables. The different sites type included; 1) high-tree, high-shrub, 2) high-

tree, low-shrub, 3) low-tree, high-shrub, and 4) low-tree, low-shrub. Generally, ULS had better overall 

coverage but TLS outperformed ULS by producing higher volumetric and height diversity indices 

within our landscape. I discuss the factors that may have influenced these observations and 

implications for using this data for wildlife habitat assessments.    

In the Second Chapter, the relationship between TLS and ULS derived vegetation structural variables 

and overall bird abundance, species richness and diversity were investigated using mixed effects 

regression models. Models showed strong significant associations between vegetation structural 

variables including canopy roughness, vegetation volume, vertical complexity and the abundance of 

individual species and guilds. The best performing models were for individual bird species and guilds, 

whereas overall diversity and abundance showed less association to LiDAR-derived vegetation 

structural metrics. TLS and ULS based models performed similarly when identifying vegetation 

structural associations with bird abundance and species richness. 

In the Third Chapter, coarse woody debris (CWD) from TLS, ULS and the combination of both 

datasets (Fusion) was extracted. Several topographic variables were calculated as raster imagery from 

LiDAR point clouds and Random Forest (RF) machine learning algorithms were then utilised to 

classify CWD. Noise reduction algorithms were applied to reduce noise from the classified imagery. 
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Digital height model (DHM), surface roughness and topographic position index were important 

variables in classifying CWD with RF. Classification accuracy varied depending on the amount of 

ground vegetation cover. The impacts of ground vegetation cover on CWD accuracy in a grassy 

woodland were quantified and discussed. 

The Fourth Chapter explores the relationship between LiDAR derived vegetation structural metrics 

and the presence and abundance of reptiles and amphibians. Models found significant associations 

between woodland reptile and amphibian populations and a number of vegetation structural 

characteristics from the selected variables, the most common of which were mean canopy height, 

canopy skewedness, vertical complexity, volume of vegetation and CWD. Notable relationships 

between herpetofauna population data and vegetation structural metrics are discussed with reference 

to existing literature on habitat associations for these animals. I also explore reasons why significant 

associations between LiDAR derived vegetation structural metrics and animal population data were 

not consistent across sensors and suggest directions for future research. 

Introduction 

Vegetation structure is the three-dimensional spatial arrangement of vegetation, which is an important 

aspect of habitat quality for many animals (Verschuyl et al., 2008, Jung et al., 2012)). Vegetation 

structure is widely used by animals for foraging, nesting, reproduction, hibernation and protection from 

predation (McElhinny et al., 2006). Therefore, animal habitat assessments often require accurate 

measurement of vegetation structure (Lahoz-Monfort et al., 2010, Davies and Asner, 2014). To date, 

a number of traditional field-inventory methods have been developed to measure vegetation structure 

(MacArthur, 1961, Peet et al., 1998). However, data collection using these methods is usually labour 

intensive, time-consuming and limited to small spatial extents (Lahoz-Monfort et al., 2010, Wood et 

al., 2012, Davies and Asner, 2014).  

Light detection and ranging (LiDAR) is a rapidly developing technology that has opened the door to 

wide-scale mapping of landscape and vegetation structure with a high degree of accuracy and detail. 

LiDAR emits a laser light from a sensor and records light reflected back from earth objects, calculating 

the distance to generate a three-dimensional representation of structural features (Lefsky et al., 2002, 

Goetz et al., 2007). LiDAR sensors can be attached to spaceborne, airborne (ALS), unmanned aerial 

vehicle (ULS), terrestrial (TLS) and mobile platforms to collect three-dimensional data (Vierling et 

al., 2008). Most of the research and applications involving LiDAR are focused on vegetation mapping 

for estimating above ground biomass, canopy volume and three-dimensional distributions of forest 
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structure (Lim et al., 2003, Hackenberg et al., 2015, Puletti et al., 2020). More recently, however, 

LiDAR has captured the attention of ecologists looking for tools to improve wildlife habitat 

assessments and/or investigate plant-animal interactions across landscapes (Davies and Asner, 2014, 

Bakx et al., 2019).  

The majority of wildlife habitat research with LiDAR data has come from sensors on airplanes, which 

have shown great promise for identifying and quantifying many vegetation and landscape features 

across wide areas, but typically have much lower resolution than ULS or TLS sensors (Bakx et al., 

2019). The main limitation of ALS in forests and woodlands is that structural information from the 

sub-canopy and ground layer is often occluded by upper canopy vegetation (Bakx et al., 2019, Levick 

et al., 2021). As a result, below canopy structural information has been largely excluded from studies 

of animal-habitat associations with LiDAR data (Shun Li, 2019). However, below canopy vegetation 

structure can also be important for explaining landscape use by many different species (Cody, 1981b, 

Fischer et al., 2004, Bakx et al., 2019) and these features can be captured by terrestrial (Maas et al., 

2008, Blakey et al., 2017) and even airborne ULS sensors (Chisholm et al., 2013). 

High resolution LiDAR (TLS and ULS) datasets can provide a nearly complete representation of the 

three-dimensional structure of vegetation, which is not possible using traditional field-inventory 

methods (Levick et al., 2021). Highly detailed and accurate information on canopy, sub-canopy and 

ground layer structures collected from these sensors have been used for forest inventory (Moskal and 

Zheng, 2012, Brede et al., 2019), vegetation biomass (Hackenberg et al., 2015, Wang et al., 2017) and 

fuel hazard assessments (Hillman et al., 2021). Despite its great potential for capturing important 

habitat structural elements of canopy and sub-canopy dependent species, TLS datasets have been used 

in only a few animal habitat modelling studies (Vogeler and Cohen, 2016); including bird nesting 

habitat selection (Michel et al., 2008), butterfly populations estimates (Hristov et al., 2019), bat habitat 

preferences and flight behaviour (Yang et al., 2013, Blakey et al., 2017) and modelling the functional 

properties of cover for prey animals (Olsoy et al., 2015). Even fewer studies have utilized ULS to 

investigate animal-habitat associations (for an exception see, (Wilson et al., 2020). Compared to 

airplane sensors, ULS and TLS typically offer higher resolution data but require longer survey times 

for large areas, and this is particularly true for stationary terrestrial sensors that must be manually 

repositioned throughout a landscape. However, higher resolution data and below canopy detail may be 

important for capturing structural elements at scales relevant to landscape use by many animals and 

particularly those that depend on sub-canopy vegetation features (Vogeler and Cohen, 2016).  
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For the first time, I utilized high resolution TLS and ULS data for investigating relationships between 

vegetation structure and the abundance and diversity of birds, reptiles and amphibians in a woodland 

landscape. The general aim of this study was twofold: 1) to investigate relationship between LiDAR 

derived vegetation structural metrics and animal population data and, 2) to examine the performance 

of TLS, ULS and the combined datasets (Fusion) for modelling habitat structures that may be 

important to woodland fauna.  

Over the course of the research presented in my thesis chapters, I focused on the following questions: 

1) Can TLS and ULS capture vegetation structural metrics that help explain the presence and 

abundance of woodland bird and reptile species? 2) Which sensor and platform provides the most 

accurate measurements of these vegetation structural metrics, TLS or ULS? 3) Can we accurately 

detect coarse woody debris from ULS, TLS? 4) Does the fusion of TLS and ULS data improve the 

performance of models for detecting coarse woody debris and measuring structural attributes that help 

explain animal - habitat associations?  

Although this research was conducted in south-eastern Australia, the developed methods and 

applications are relevant to many species and communities across the globe. 

Thesis Outline 

The chapters of this thesis, are intended for publication in academic journals. The target peer-reviewed 

journal is included on the Declarations page along with co-author contributions to the manuscript. To 

keep a consistent style throughout the thesis, tables and figure formats, abbreviations and reference 

styles have been standardised. References for each chapter are provided directly after each chapter. 

As the primary author of each chapter/journal article, I was responsible for the majority of the work 

involved in every manuscript, including field data collection, data analysis, literature review and 

writing. My supervisors, advisors and several other colleagues added significant contributions to 

various aspects of my research (e.g., research design, data analysis, and manuscript editing). Where 

applicable, I have recognized their contributions by including them as co-authors in the journal articles. 
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Abstract 

This study employs LiDAR technology to calculate vegetation structural metrics that may be useful 

for assessing habitat quality and predicting the presence and abundance of structurally sensitive animal 

species. We compare outputs from two LiDAR platforms, an Unmanned Aerial Vehicle (RIEGL 

miniVUX-1UAV LiDAR; ULS) and a Terrestrial Laser Scanner (Topcon GLS2000; TLS) that we 

used to collect structural data from a critically endangered woodland ecosystem in SE Australia. This 

is also the site of a long-term restoration study and ongoing wildlife population monitoring. Despite 

better overall coverage by the ULS, the TLS provided considerably higher values for ground layer 

vegetation complexity and higher vegetation volume for the mid-story and canopy strata. We discuss 

the factors that may influence these observations and implications for using these sensors for habitat 

assessments.   

Introduction 

Models that predict the presence and abundance of species are important tools in wildlife management 

and applied ecology (De Wan et al., 2009). Vegetation structure is an aspect of habitat quality that can 

influence the presence and abundance of many animals (Davies and Asner, 2014). However, the 

collection of accurate vegetation structural data over whole landscapes is limited by time and 

resources.  

Remote sensing methods provide alternative means for collecting vegetation and landscape structural 

data over wide areas. Light Detection and Ranging (LiDAR) is the most direct tool for capturing 

variation in structural elements at high spatial resolution for parameterizing organism-habitat models 

(Graf et al., 2009, Tattoni et al., 2012). LiDAR point clouds allow analysts to calculate landscape 

structural variables including terrain models, vegetation height, density and biomass, volume, and 

spatial distributions of landscape features (van Leeuwen et al., 2006, Jupp and Lovell, 2007). This 

information may be useful for identifying important, structure-specific habitat elements that can 

influence the presence and abundance of particular species (Bradbury et al., 2005, Davies and Asner, 

2014) .  

Despite the fact that the application of LiDAR to habitat mapping is relatively new, many studies 

already have been undertaken to assess its utility for habitat assessment for a range of different animals, 

but with considerable focus on birds (Bradbury et al., 2005, Lesak et al., 2011, Sillero and Gonçalves-

Seco, 2014). For example, (Clawges et al., 2008) found a relationship between bird species diversity 

and LiDAR based vegetation volume, foliage diversity and shrub density. Although canopy height 
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metrics have been used to predict the distribution, breeding success and diversity of some bird species 

(Bradbury et al., 2005, Lesak et al., 2011), a thorough review found that vegetation heterogeneity and 

complexity is often more influential than simple canopy cover or vegetation height for animal diversity 

(Davies and Asner, 2014). Estimates of landscape surface heterogeneity with LiDAR point clouds have 

also been used to identify habitat preferences of lizards (Sillero and Gonçalves-Seco, 2014). 

Airborne LiDAR (ALS) sensors are commonly used in these studies because they allow information 

to be collected across wide areas in a relatively short period of time (Clawges et al., 2008, Sillero and 

Gonçalves-Seco, 2014). For canopy dwelling wildlife, ALS and LiDAR data from unmanned aerial 

vehicles (ULS) can be particularly useful because most of the returns from these sensors are from the 

upper vegetation layers. However, a limitation of ALS and ULS is their ability to see landscape features 

in detail that may be wholly or partially occluded by tree canopies (Jupp and Lovell, 2007). This can 

be especially problematic for measuring important structural habitat elements for those species that are 

understory specialists (Cody, 1981a). Although terrestrial laser scanning (TLS) data allow for better 

coverage of landscape structure below forest canopies, data collection is almost always more time 

consuming and the understory of some forest landscapes can be difficult to access and capture with 

TLS in the desired detail due to dense vegetation (Jupp and Lovell, 2007).  

In Australia, temperate woodlands are a critically endangered ecosystem due to anthropogenic 

landscape and climate change (Lindenmayer et al., 2010). Despite once being widespread throughout 

southern Australia and Tasmania, less than 3% of the original extent of these ecological communities 

still exist (Hobbs and Yates, 2000, Lindenmayer et al., 2010). The remaining temperate woodlands are 

critical habitat for multiple endangered bird, reptile and mammal species (Lindenmayer et al., 2010, 

Manning et al., 2011). These landscapes are also ideal to investigate the utility of ULS and TLS data 

for wildlife habitat assessments owing to the unique structural composition of these environments and 

the need to identify appropriate methods to assess, protect, and restore habitat for the threatened species 

and ecological communities there.  

Woodlands differ from dense forests in that the growth of trees is more widely spaced, which can 

facilitate better penetration into the understory by ULS. In these landscapes, ULS may provide 

sufficient detail to capture understory structure to assess habitat for ground and shrub dwelling animals. 

Widely spaced trees and low, grassy understories also make it easier to collect TLS data and cover a 

wider area with less occlusion. For the first time, we compare the ability of data collected with a 

common, commercially available TLS (Topcon GLS2000) and ULS data (RIEGL miniVUX-1UAV 

LiDAR) to provide key structural metrics of vegetation that may be useful for habitat assessments for 
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temperate woodland bird and reptile species based on earlier research into relationships between 

habitat quality/site occupancy and landscape structure (Cody, 1981a, Manning et al., 2011, Davies and 

Asner, 2014, Howland et al., 2014).  

Methods 

Study Area  

The study area is located in Mulligan’s Flat-Goorooyarroo long-term Woodland Experiment in the 

Australian Capital Territory (ACT), Australia (35°09' S - 149°09', elevation 650-700m; Fig. 1). This 

temperate woodland is dominated by Blakely’s Red Gum (Eucalyptus blakelyi) and Yellow Box (E. 

melliodora) in the canopy, Acacia spp. in the mid-story, and a ground-layer of native grasses that 

include Joycea pallida, Austrodanthonia spp., Themeda australis and Aristida ramose (McIntyre et 

al., 2010).  

 

Figure 1: The study area, Mulligan’s Flat-Goorooyarroo Woodland Experiment, in Canberra Australia. 

The four plots selected for this study are highlighted in blue.  
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The aim of the Mulligan’s Flat-Goorooyarroo Woodland Experiment is to restore the structure and 

function of a temperate woodland and to increase its native biodiversity (Manning et al., 2011). The 

area includes 96, 1 ha plots (200 m x 50 m) where surveys for birds, reptiles and small mammals have 

been undertaken bi-annually for the past decade. Various restoration activities have also been 

conducted throughout the landscape and additional information about the ongoing research and 

restoration in this area can be found here: http://www.mfgowoodlandexperiment.org.au/. Mean 

average daily temperatures range from 6.5° C to 19.7° C, and mean annual rainfall is 615.9 mm 

(Bureau of Meteorology, 2019).  

 TLS data collection and post-processing 

We used a Topcon GLS2000 (Tokyo, Japan) for TLS data collection in the previously established 96, 

1 ha plots (Manning et al., 2011). Data was only collected during daylight hours and fine weather (no 

rain or strong wind) between October 1st and 31st in 2018. The Topcon GLS2000 is a high-density 

laser scanner that emits near-infrared light (1064 nm) pulses at up to 120,000 per second. The field-

of-view is 360° and 270° in the horizontal and vertical direction, respectively. The beam diameter of 

a single pulse is 4 mm at 60 m. TLS data were collected from 7 stations in each 1 ha plot in zigzag 

formation, with approximately 30 m between scanning stations (1.7 m scanner height) and a scanning 

resolution of 6 mm at 10 m. The position of each scan was measured with a differential GPS (Trimble 

Geoexplorer 6000). In total, 672 scans were collected across the 96 plots.  

The full 96 plot dataset was used for a separate study to investigate relationships between LiDAR 

derived structural metrics and the presence and abundance of birds and reptiles. For this comparative 

study, we selected four plots (Fig. 1) that represent the four woodland vegetation types within the study 

area: 1. High tree cover, high shrub cover (HH). 2. Low tree cover, high shrub cover (LH). 3. High 

tree cover, low shrub cover (HL). 4. Low tree cover, low shrub cover (LL) (Manning et al., 2011). 

Coordinates of scan stations were post-processed to improve the location accuracy using Stromolo 

base station data, 20 km from the study area. In each plot, point clouds from the 7 individual scan 

stations were merged using the Multi-Station Adjustment (MSA) plugin in RiScan Pro software 

(RIEGL Laser Measurement Systems GmbH). MSA searches for planar surfaces in the point clouds 

and aligns common points on overlapping planes from different stations. Next, the point clouds from 

each plot were georeferenced using GPS locations of each scan position measured in the field, clipped 

with corresponding 96 plot polygons and subsampled into 10 mm spacing using Cloud Compare 

(CloudCompare 2.10.2). Datasets were cleaned of noise and classified into ground and non-ground 

http://www.mfgowoodlandexperiment.org.au/
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classes and normalized by converting elevation values to height above ground values using LAStools 

software scripts (Isenburg, 2012) (Fig. 2).  

ULS data collection and post-processing 

The ULS LiDAR platform consists of a quadcopter integrated with RIEGL miniVUX-1UAV LiDAR 

sensor and APX INS/GNSS systems. ULS LiDAR data were collected between the 7th and 14th of 

November, 2018, in fine weather, during daylight hours, with a 100 kHz pulse repetition rate and up 

to 100,000 measurements/second. The flight was performed at 80 m above the take off point, flying at 

approximately 25.2 km/h, with up to 5 returns per pulse. We used DJI ground station pro V2 to plan 

the flights (SZ DJI TECHNOLOGY CO., 2018).  

ULS data from the 96 plots were clipped to create separate point clouds for each plot and noise points 

were removed using lasnoise (Isenburg, 2012). Point clouds were classified into ground and non-

ground points using lasground (Isenburg, 2012). We normalized point clouds by converting elevation 

values to height above ground values (Fig. 2) with lasheight (Isenburg, 2012). The same four plots for 

the TLS data analyses were also used for the ULS analyses. 

 

Figure 2: Normalized TLS (top) and ULS (bottom) point clouds from plot HH colored by height. 

Calculating LiDAR landscape structural metrics  

We calculated a number of structural variables from TLS and ULS normalized height point clouds. 

Canopy height metrics and canopy structural indices were calculated from points above 1.3 m using 

the lascanopy function in LAStools (Isenburg, 2012). We then stratified the image into three vegetation 

layers, ground (<= 1m), mid-story (>1 m – <10 m), and canopy (>10 m), based on established 

descriptions of vegetation strata for eucalypt grassy woodlands (Department of Environment, 2013). 

For each layer, we calculated mean and standard deviation of height and Shannon Diversity Index 
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using lidR package (Roussel, 2017). In addition, volumetric data for each layer were computed by 

excluding ground points and constructing 0.5 m voxels (volumetric pixels) from point clouds, with 

each voxel made of one or more points.  

Results and discussion 

As expected, there were a number of observed differences in the performance and coverage of the ULS 

and TLS sensors. Figure 3 depicts the cloud-to-cloud (C2C), absolute distance between returns from 

the two point clouds. Despite the fact that the point cloud from the TLS was denser than the ULS data 

(Fig. 2), the ULS provided more complete coverage due in part to its multiple returns, compared to the 

single return of the TLS scanner and occlusion issues experienced by the ground-based TLS (Fig. 3). 

More scanning stations would have increased the coverage of the TLS but also substantially increased 

the data collection and processing time. A multiple return TLS could also improve coverage from the 

same number of stations.   

Despite the occluded areas, the merged TLS data created detailed point clouds that generally 

outperformed the ULS data in their ability to detect vegetation structural information across most 

layers and vegetation types. However, the ULS reported higher vegetation volume than the TLS in the 

ground-layer of the LL plot and no difference in the ground-layer of the HH plot. Visual inspection 

revealed that LL plot had a lot of coarse woody debris (e.g., fallen logs) that caused occlusion errors 

(laser pulses were blocked) in the TLS point cloud (Table 1). Since LL also had relatively few trees 

and shrubs, the ULS could better detect the ground-layer vegetation volume. Vegetation volume was 

higher with TLS than ULS for all other plot types and vegetation strata.  
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Figure 3: Normalized TLS (top) and ULS (middle) point clouds from plot HH shaded by height. The 

bottom image shows the cloud to cloud absolute distance between returns from the two point clouds 

using a colour scale. 

The TLS captured more variation than the ULS in the ground-layer vegetation of all plot types and the 

mid-story of the LL plot according to the Shannon Diversity Index (Table 1). This is probably due to 

the higher point cloud density of the TLS sensor, which performs particularly well in more open 

landscape conditions. Diversity index performance for the remaining mid-story and canopy vegetation 

layers was similar across sensors.  
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Table 1. LiDAR structural metrics calculated from the ground-layer, mid-story, and canopy vegetation 

strata. ULS data is on the left and TLS data on the right of each column. 

 

Vegetation height was consistently higher in ULS than TLS data owing to the position of airborne vs 

terrestrial sensors (Tables 1 and 2). Since airborne sensors have a clear line of sight to the upper 

canopy, max height is more accurately recorded by the ULS (Table 2). However, height percentile 

values below the top layer of vegetation are typically lower for TLS due to its ability to detect more 

structural information under the canopy compared to the ULS (Table 2). Canopy cover was also 

captured more completely with the TLS than the ULS data for the same reason (Table 2).  

Table 2. LiDAR canopy metrics calculated from >1.3 m.  

 

 
Plot Volume (m3) Mean Height Standard Deviation 

of Height 
Shannon Diversity 

Index  
ULS TLS ULS TLS ULS TLS ULS TLS 

HH 4960.88 4968.50 0.03 0.11 0.07 0.16 0.03 0.19 
LH 4701.13 5383.13 0.02 0.05 0.06 0.14 0.02 0.17 
HL 5245.50 5783.75 0.04 0.09 0.08 0.17 0.05 0.28 
LL 5097.38 4367.88 0.05 0.03 0.07 0.11 0.04 0.11 
Ground-layer (≤1m)             
HH 9609.00 14796.13 6.54 6.02 2.28 2.36 0.93 0.95 
LH 6640.13 12991.88 6.13 5.78 2.52 2.50 0.95 0.96 
HL 5979.38 9678.13 5.98 5.56 2.60 2.63 0.96 0.96 
LL 153.88 575.50 5.01 6.41 3.14 2.60 0.86 0.93 
Mid-story (>1m - < 10m)  
HH 5215.63 6375.00 13.20 12.97 3.10 3.22 0.64 0.62 
LH 3723.25 5235.75 12.84 12.40 2.00 1.94 0.60 0.58 
HL 6511.38 9162.88 14.67 14.05 2.75 2.62 0.69 0.67 
LL 458.63 978.75 14.94 13.42 2.01 2.11 0.62 0.62 
Canopy (>10m) 

 

 
Plot 

Max  
Height  

Standard 
Deviation of 

Height 

5 th  
Percentile 

Height 

50 th 
Percentile 

Height 

90 th 
Percentile 

Height 
Skewness  Kurtoses  Canopy 

Cover % 

 ULS TLS ULS TLS ULS TLS ULS TLS ULS TLS  ULS TLS ULS TLS ULS TLS 

HH 27.77 27.73 4.23 4.00 3.13 2.32 9.37 7.50 14.51 12.86 0.76 1.09 4.57 5.58 38.40 58.80 

LH 19.34 19.31 4.04 3.66 2.54 1.96 9.56 7.34 14.40 12.49 -0.07 0.36 2.18 2.59 30.20 50.10 

HL 22.02 22.07 4.99 4.88 2.57 2.07 11.43 9.21 17.69 16.29 -0.18 0.17 2.00 2.01 27.20 49.60 

LL 18.45 18.49 3.92 3.98 4.52 3.61 14.59 10.95 17.31 15.78 -1.46 -0.31 4.73 2.36 2.20 17.00 
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Conclusion 

This research compared the performance of ULS and TLS data for estimating vegetation structural 

metrics that may be useful for habitat assessments for temperate woodland bird and reptile species. 

TLS detected more variation in vegetation structure in the ground-layer than the ULS. Despite 

voxelization, TLS also outperformed ULS in estimating the volume of vegetation across all layers 

except the ground layer of woodlands with low tree and shrub cover due to low-lying occlusions. This 

is worth noting for reptile habitat assessments that may focus on ground-layer metrics. Overall, based 

on existing studies that have linked measures of vegetation structural diversity and volume to animal 

species richness and abundance, the TLS sensor is likely to perform better than the ULS for this 

purpose. However, the TLS is more time consuming in data collection and processing so this must be 

weighed against the faster but potentially more limited coverage of ULS across wide areas.  
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Abstract 

Vegetation structure influences landscape use and habitat quality for many bird species. Owing to the 

difficulties associated with collecting structural data from traditional field measurements, numerous 

studies have investigated the utility of Light detection and ranging (LiDAR) for providing landscape-

scale structural information that may be useful for wildlife habitat assessments and to explore plant-

animal interactions. Notably, almost all of these studies have involved the use of LiDAR from airborne 

rather than terrestrial platforms. Many LiDAR structural metrics that have been shown to be important 

for explaining bird species occurrence and diversity, such as vegetation complexity in the understory 

and ground-layer and overall vegetation volume, may be partially obscured from airborne sensors by 

tree canopy cover. For the first time, we collected terrestrial LiDAR (TLS) and unmanned aerial 

vehicle (UAV) LiDAR (ULS) data in a woodland landscape to compare the ability of both sensors to 

identify relationships among vegetation structural metrics and bird species richness and abundance. 

Individual species abundance models provided better prediction power (mean R2 = 0.311 (TLS), R2 = 

0.305 (ULS)) than bird community abundance by functional guilds (mean R2 = 0.226 (TLS), R2 = 

0.235 (ULS)), overall bird abundance (R2 = 0.097 (TLS), R2 = 0.164 (ULS)), species richness (R2 = 

0.139 (TLS), R2 = 0.141 (ULS)) and diversity (R2 = 0.171 (TLS), R2 = 0.161 (ULS). Canopy roughness, 

vertical complexity of the first vegetation layer, total vegetation volume and canopy height were 

among the most common significant variables in explaining avian biodiversity and individual species 

abundance. Our study revealed that several vulnerable bird species are strongly associated with LiDAR 

structural variables, which may assist with habitat assessment and conservation management. Overall, 

TLS and ULS models provided similar results. However, contrary to our initial expectations, ground 

layer vegetation complexity, which typically showed a strong positive relationship to ground foraging 

species, was detected better by ULS than TLS in this open woodland landscape due to low-lying 

occlusions, like coarse woody debris and shrubs, in the TLS field of view. 

 

Introduction 

Vegetation structure as important habitat elements for avifauna 

Vegetation structure is the horizontal and vertical arrangement of plants across the landscape 

(Verschuyl et al., 2008, Davies and Asner, 2014) . Vegetation structural complexity and heterogeneity 

have been shown to have a positive relationship to biodiversity because they create a greater variety 

of microclimate and microhabitats that produce more food and cover for a range of species (Verschuyl 



32 
 

et al., 2008). MacArthur et al. (1961) first identified the importance of the vertical distribution of 

foliage density for bird species diversity. They found a strong relationship between bird species 

diversity and the height profile of foliage density that was structure driven, since it was not related to 

vegetation species diversity. Notably, they also found that foliage density at ground (<2 m), midstory 

(2-25 m) and canopy (>25 m) layers appeared to contribute equally to bird diversity. Subsequent 

studies have also identified strong relationships between bird biodiversity and abundance and 

vegetation structure. For example, bird species abundance was found to be strongly associated to 

canopy, sub-canopy and understory biomass (Stanley and Herman, 1974). Kikkawa (1982) identified 

a strong relationship between bird abundance and various forest structural attributes including foliage 

height diversity and canopy cover. Research by Sekercioglu et al. (2002) identified significant 

relationships between the horizontal heterogeneity of trees and forest dependent bird abundance and 

species richness. 

Remote sensing of vegetation structure  

Several metrics of forest structural complexity have been developed to estimate vertical and horizontal 

vegetation height, volume, variation, canopy cover, coarse woody debris and dead standing wood 

(James and Shugart Jr, 1970, Verschuyl et al., 2008). Traditional methods to derive these metrics 

typically involve plot level measurement that are very time consuming, can be particularly difficult in 

rough terrain or dense understories, and assess only a fraction of the available vegetation that is then 

extrapolated to wider areas (James and Shugart Jr, 1970, Zehm et al., 2003, David et al., 2010). The 

development of aerial photography and satellite-based multispectral imagery (e.g. Landsat) from the 

early 1970s offered spectral reflectance measurements of vegetation attributes that could be collected 

much more rapidly over wide areas, such as biomass, plant canopy cover and leaf area index (Rouse 

et al., 1974, Tucker, 1979). While useful for looking at relationships between habitat heterogeneity 

and bird species richness (Turner et al., 2003, Leyequien et al., 2007), these sensors were only capable 

of providing imagery data in two-dimensions (i.e., XY coordinates). They were unable to provide 

three-dimensional (Z coordinates) measurements such as canopy height variability and vegetation 

complexity in different forest layers, which are necessary for assessing various aspects of vegetation 

structure (Lefsky et al., 2002, Turner et al., 2003), which also may be important habitat criteria for 

many animals (MacArthur, 1961, Goetz et al., 2007, Vierling et al., 2008). 

The introduction of Light Detection and Ranging (LiDAR) remote sensing technology provided high-

resolution topographic maps and information on vegetation height, cover, volume and vegetation 

complexity with a high level of detail and accuracy (Lefsky et al., 2002, Goetz et al., 2007, Levick et 

al., 2019). Unlike passive sensors like, Landsat, IKONOS, Sentinel or aerial photography that depends 
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on sun light reflected from objects, LiDAR is based on the use of a laser pulse emitted from a sensor 

and reflected back from objects. Reflected light is detected and digitized by the sensor creating a record 

of returns that are a function of the distance between the sensor and the reflected object (Lefsky et al., 

2002, Goetz et al., 2007, Anderson et al., 2016).  

Discrete return LiDAR sensors measure one or more returns from each emitted laser pulse (Lefsky et 

al., 2002, Anderson et al., 2016). Multiple return sensors may provide more detailed information than 

single return sensors, since each light pulse may return from a different object depth in the field of 

view (Anderson et al., 2016, Jucker et al., 2018). Full-waveform sensors record the time-varying 

intensity of the returned energy from each laser light pulse, which provides a record of height 

distribution of the surface features. The major difference between discrete and waveform is that the 

discrete return sensors measure major peaks on the vegetation surface; however, waveform return 

sensors capture the entire signal trace on the surface for later processing (Lefsky et al., 2002, Anderson 

et al., 2016). LiDAR sensor platforms can be terrestrial (Terrestrial Laser Scanner - TLS), mobile, 

UAV (Unmanned Aerial Vehicle - ULS), airborne (Airborne Laser Scanner - ALS) or satellite based 

(Vierling et al., 2008, Sumnall et al., 2016).  

LiDAR derived vegetation structure and bird species richness and abundance 

Vegetation structural metrics derived from LiDAR data have been widely used to investigate animal - 

habitat relationships, with a particular focus on birds (Bradbury et al., 2005, Goetz et al., 2007, Müller 

et al., 2010, Eldegard et al., 2014). In one of the first comparisons between passive and active sensor 

capabilities for this purpose, Goetz et al. (2007) found that LiDAR derived canopy height distribution 

variables proved to be a stronger predictor of bird species richness in temperate forest ecosystems than 

a commonly used Normalized Difference Vegetation Index (NDVI) derived from Landsat imagery. 

Another study identified relationships between bird presence and canopy height percentiles, standard 

deviation of laser returns and canopy density metrics calculated from LiDAR data from a boreal forest 

(Eldegard et al., 2014). LiDAR derived vegetation structure, such as foliage height diversity, 

vegetation volume and shrub density were also found to be significantly correlated to bird species 

diversity and density in forest environments (Clawges et al., 2008). Moreover, forest songbird species 

richness and species richness by different functional guilds have been predicted from LiDAR-derived 

canopy and mid-story height and mid-story density in mixed hardwood forest (Lesak et al., 2011). 

Researchers also investigated the usefulness of LiDAR-based structural metrics for predicting bird 

species diversity and richness in broad-leaved forest (Sasaki et al., 2016). They found that total 

vegetation volume was the strongest predictor of species richness whereas forest canopy gap had a 

strong correlation with species diversity. Another study found that bird species richness increased with 
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canopy horizontal heterogeneity calculated from LiDAR data; however, vertical heterogeneity had a 

negative effect on species richness (Carrasco et al., 2019). A review by Davies and Asner revealed that 

23 avian studies found a positive relationship between species richness and abundance and canopy 

structural diversity and vertical distribution of vegetation. In particular, vegetation structural 

heterogeneity appeared to have a stronger relationship to bird observations than canopy cover alone 

(Davies and Asner, 2014).  

Notably, almost all of the studies that used LiDAR to investigate relationships between vegetation 

structure and habitat quality for birds have used airborne or UAV LiDAR data (Eldegard et al., 2014, 

Sasaki et al., 2016, Carrasco et al., 2019). While airborne platforms provide accurate information on 

upper strata vertical structure and volume of vegetation, they may be limited in their ability to measure 

vegetation metrics in the ground and mid layers because of weak penetration of ALS pulses through 

the upper canopy (Bakx et al., 2019, LaRue et al., 2020, Crespo-Peremarch et al., 2020). A recent 

review analyzed 50 papers on bird species distributions and species richness in relation to LiDAR‐

based vegetation variables (Bakx et al., 2019). It was found that most of the studies used low density 

ALS data, usually 10 points/m2, which have limited penetration below the canopy, especially to ground 

layer vegetation. Authors recommended that future studies should focus on higher density point clouds 

that can capture more detail below the canopy, as the lower strata of vegetation is also important for 

many bird species (Bakx et al., 2019). They also suggested that, in addition to the widely used 

horizontal and height diversity vegetation metrics, future research should also consider vegetation 

volume in different strata, which can be calculated from voxelized point cloud. Voxelized point cloud 

means creating three-dimensional grids or so called “voxels” from one or more LiDAR points (Sasaki 

et al., 2016).  

Terrestrial LiDAR can generally provide more detailed information on vegetation below the canopy 

of forests and woodlands because it measures the vegetation from the ground level and typically with 

higher resolution (LaRue et al., 2020). However, depending on the vegetation height and density, TLS 

can also suffer from occlusions, particularly in the canopy but also in other strata where vegetation or 

other landscape structural features block the field of view, resulting in gaps of information (LaRue et 

al., 2020, Crespo-Peremarch et al., 2020). Several studies have investigated the best placement of 

terrestrial LiDAR sensors in the landscape depending on the density of trees and area of measurement 

to provide the most complete coverage (Trochta et al., 2017, Muir et al., 2018). There is always a trade-

off between the amount of time required to repeatedly position the scanners to collect the data and the 

completeness of the data coverage. The automatic registration of ALS and TLS point clouds allows 

data to be combined from multiple perspectives and this can help resolve some occlusion issues; 

however, this is time-consuming as well (Dai et al., 2019). Data collection with TLS can also be 
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impaired by the difficulties associated with traditional field data collection in inaccessible areas with 

dense understories. Even in relatively open landscapes, TLS data collection is usually slow and is 

typically only applied to smaller areas (< 1 ha) (Liang et al., 2016a). However, in open woodlands in 

particular, TLS may offer some advantages for measuring vegetation structural metrics that are known 

to be important predictors of bird habitat quality and the occurrence and diversity of bird species 

(Michel et al., 2008). 

For the first time, we compare the performance of high density TLS and ULS LiDAR derived 

landscape structural variables for modelling community, functional trait and species level bird 

abundance in an Australian woodland landscape which can also be applicable to various forest 

environment across the globe. We used the data from both sensors to test the following hypotheses:  

(1) TLS and ULS data can be used to accurately classify field-measured vegetation classes; 

(2) high density TLS LiDAR point clouds will perform better for modelling overall bird abundance, 

species richness and diversity than lower density ULS point clouds, and;   

(3) the relationship between landscape structural data and particular bird species and groups will be 

modelled more accurately from the TLS platform for bird species and guilds that are most associated 

with ground and mid-story vegetation layers and ULS for those that primarily use the canopy strata.   

 

  
Figure 1. Map of study area. 1) Australia, 2) Australian Capital Territory (ACT), 3) Mulligan’s Flat-

Goorooyarroo Woodland Sanctuaries: Yellow color show 96, 1 ha sites, orange color show 24 

polygons with four vegetation types. 

 

1) 

2) 

3) 
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Methods 

Study area 

The study area comprises Mulligan’s Flat (683 ha) and Goorooyarroo (702 ha)  nature reserves 

(MFGO) in the north-eastern corner of the Australian Capital Territory (ACT), Australia (35°09' S - 

149°09' E; Fig. 1). These two adjacent reserves were established in 1994 and 2006 respectively to 

conserve and restore a critically endangered grassy woodland ecosystem (Manning et al., 2011). 

Locally common tree species include Blakely’s Red Gum (Eucalyptus blakelyi) and Yellow Box (E. 

melliodora) with a relatively open midstory of primarily acacia spp. The grassy ground-layer 

vegetation is dominated by Joycea pallida, Austrodanthonia spp., Themeda australis and Aristida 

ramose (McIntyre et al., 2010, Shorthouse et al., 2012, McIntyre et al., 2014). Prior to becoming 

reserves, MFGO was leasehold grazing land with some areas of past cropping and pasture 

improvement (Manning et al., 2011, Shorthouse et al., 2012). The topography is gently undulating 

with a few hills and the elevation ranges from 650 m to 700 m. Average daily temperature in 2018 

ranged from a minimum of 6.9˚C to a maximum of 22.0 ˚C, and mean annual rainfall was 472.0 mm 

(Bureau of Meteorology, 2019).  

Restoration activities have been undertaken in an attempt to restore the function and biodiversity of 

the areas, and feral predators and grazers have been excluded with purpose built fencing around the 

reserves (Manning et al., 2013). To monitor ecosystem recovery over time, animal and vegetation 

surveys are periodically conducted across 96, 1 ha plots (200m x 50 m). These plots are stratified 

across the reserves in 24 clusters that include four different vegetation types: 1) high tree cover, high 

shrub cover (HTHS), 2) high tree cover, low shrub cover (HTLS), 3) low tree cover, low shrub cover 

(LTLS), and 4) low tree cover, high shrub cover (LTHS). Each plot is marked in the field along the 

long axis by plastic pegs at the 0 m and 200 m points, and with star pickets (A and B) at the 50 m and 

150 m points (Manning et al., 2011). Bird surveys have been conducted twice a year since 2005 at 

each plot using an acoustic and visual point count method (Manning et al., 2011).   

 

Bird data collection 

As part of long-term monitoring at MFGO, annual bird surveys are conducted during two separate 

visits by different, experienced bird observers in October using an acoustic and visual point count 

method (Manning et al., 2011). For this study, we used bird data collected within a year of LiDAR 

data collection (i.e., survey periods from 2017 to 2019), because it is unlikely that the vegetation 
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structure would have changed substantially in the period between LiDAR data acquisition and bird 

counts. During the surveys, observers stand at the A and B star picket at the 50 m and 150 m position 

along the long axes of each plot. The presence and abundance of birds in concentric bands (0 – 25 m, 

25 – 50 m, 50 – 100 m and over 100 m and overhead) are recorded for ten minutes. Detailed 

information about bird survey methods are provided in (Manning et al., 2011).  

TLS data collection and post - processing 

Terrestrial LiDAR data was collected with a Topcon GLS2000 (Topcon Corporation, Japan). The 

Topcon GLS2000 is a high-density laser scanner that emits near-infrared light (1064 nm) laser pulses 

at up to 120,000 laser pulses per second. The field-of-view of the scanner is 360° and 270° (horizontal 

and vertical direction, respectively). The beam diameter of the single pulse is 4 mm at 60 m. We 

conducted a pilot study in March 2018 to determine the best method to characterize the 96 X 1 ha (50 

m X 200 m) experimental sites with TLS data to achieve the most complete coverage within a 

timeframe that would allow us to scan all of the sites within a month.  

We collected TLS data at 1.7m scanner height with 6 mm point spacing at 10 m distance from the 

scanner. Data were collected from 5, 6 and 7 scanning stations in a test site (Fig 2). These stations 

were established in a zigzag formation with approximately equal spacing between the stations to cover 

the 200 m x 50 m site. Data collection was performed with and without co-registering the scanning 

stations to determine whether co-registration during collection was more efficient than later co-

registration during post-processing. Co-registration allows a surveyor to tie multiple scans in the same 

plot together using targets directly in the field. However, this method requires more time to place and 

scan targets and could reduce the number of scan points within a site in a given timeframe (Liang et 

al., 2016b, Blakey et al., 2017). We found that data could be co-registered effectively during post-

processing, and that allowed us to maximize the number of scans collected in the field. From 1th to 31th 

October 2018, we collected seven individual scans without co-registration in all 96, 1 ha sites for a 

total of 672 scans with 6 mm at 10 m scanning resolution. The position of each scan was measured 

with a differential GPS (Trimble Geoexplorer 6000 series) and post-processing was performed using 

local base station data to improve the point location accuracy to approximately 50 cm.  

Point clouds from seven individual scan stations were co-registered using Multi-station Adjustment 

(MSA) plugin in RiScan Pro software (RIEGL Laser Measurement Systems GmbH). Co-registering 

point clouds with MSA consists of two steps: manual and automatic registration. First, point clouds 

from two scans have been manually coarsely aligned by using the overlapping objects (trunks, trees 

and shrubs) in both scans. Then, automatic registration was implemented which uses at least four 

identical points from overlapping areas of two scans. The MSA uses the iterative closest points (ICP) 
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algorithm that minimizes the 3D distance between the identical points by translating and rotating the 

entire point cloud along X, Y, Z axes until the least minimum distance between the identical points 

from two dataset is achieved (Šašak et al., 2019). Following, the position and orientation of the first 

and second scan was locked and the same procedure was performed to register the third scan to the 

initial two scans. 

Next, the point cloud from each site was georeferenced using DGPS locations of each scan position 

measured in the field and clipped to the spatial extent of each 96 site. Point clouds were then 

subsampled into 1 cm spacing to homogenize the point distributions and duplicate points have been 

removed using Cloud Compare (CloudCompare 2.10.2).  

Figure 2. Test scan positions: a) 5 scans, b) 6 scans and c) 7 scans for 200 m by 50 m size sites.  

 

ULS data collection and post-processing 

We collected ULS LiDAR data across all of the 96, 1 ha sites in fine weather conditions from 

November 7th – 14th, 2018. The ULS LiDAR platform consisted of a quadcopter integrated with 

RIEGL miniVUX-1UAV LiDAR sensor (RIEGL Laser Measurement Systems GmbH, Austria) and 

APX INS/GNSS system (Trimble, USA). The flights were performed at approximately 90 m above 

the take off point with approximately 25.2 km/h speed, up to 5 returns per pulse, 100 kHz pulse 

repetition rate, and up to 100,000 measurements/second. Maximum scan angle of the LiDAR sensor 

was approximately ±60⁰ with swath width about 100 m. On average the four adjacent plots were 

covered by 500×500m flight area which was covered by around 11 parallel lines and one diagonal 

flight line on the return to landing. However, it is difficult to know what the average number of flight 

lines per plot as it was depended on where they were in the area we flew and their orientation. We used 

DJI ground station pro V2 to plan the flight missions (SZ DJI TECHNOLOGY CO., 2018). The ULS 
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LiDAR sensor failed to collect data on two sites, which were excluded from further analysis of ULS 

and TLS data. Data processing was done in RiPROCESS software suite by RIEGL which allowed to 

bring in the trajectory data of the drone flight, align the flight paths, georeference the point cloud and 

then export it in LAS format. The trajectory data of the UAV LiDAR that was feed into RiPROCESS 

was generated using POSPAC UAV (Applanix) using the IMU/GNSS data from the drone and RINEX 

data from the base station which was obtained from Gungahlin location of Smartnet global network.  

The ULS LiDAR data collected over the 94 sites were clipped by corresponding polygons to create 

separate point cloud for each site. Point spacing in ULS data across 94 sites ranged from 5 cm to 17 

cm with an average of 10 cm. For this reason, we homogenized the point cloud with 10 cm spacing 

and removed duplicate points using Cloud Compare (CloudCompare 2.10.2). 

Canopy height model 

Point clouds were cleaned from noise points and classified into ground and non-ground points using 

LAStools (Isenburg, 2012). We normalized point clouds by converting elevation values to height above 

ground values with LAStools (Isenburg, 2012) (Fig. 3). 

 

 

Figure 3. Normalized TLS point cloud of site GO72A-3 colored by height (top) and normalized ULS 

point cloud of plot GO72A-3 colored by height (bottom). 

 

Calculating landscape variables from the LiDAR dataset 

Canopy metrics were calculated from points above 1.3 m (Table 1). Based on existing vegetation layer 

descriptions for eucalypt grassy woodlands (Department of Environment, 2013), we divided the point 

cloud into three layers representing  the ground layer (≤1m), the mid-story (> 1m to 10m) and the 
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upper story (> 10m) (Fig. 4) and calculated additional vegetation metrics for each layer (Table 1). 

Vegetation volume was estimated by excluding ground points and constructing 0.5 m voxels 

(volumetric pixels) from point clouds, with each voxel made of one or more points. A fraction of 

woody canopy cover for each site was calculated by creating 0.25m grids from points above 1.3m and 

dividing the sum of the areas of all pixels by the size of the total area of the site (200m×50m). A total 

of 37 metrics were computed with lidR package (Roussel, 2017). List of LiDAR –derived landscape 

variables and descriptions are provided in Table 1. 

 
Figure 4. Vegetation layers: L1 - ground layer (L1 > 1m), L2 - mid-story layer (1m < L2 < 10m), L3 - 

upper story layer (L3 > 10m). 

Table 1. Description of calculated landscape structural variables from LiDAR dataset 

Name of variable Description 

maxH Maximum height of canopy (points > 1.3m). High maximum value 

means there are big trees in the site. 

meanH Mean height of canopy (points > 1.3m). If the value is higher, the 

site has more big trees, if the value is lower, more shrubs and 

regeneration trees abundant in the site.  

stdH Standard deviation of canopy height (points > 1.3m). It describes the 

variation in the canopy height. 

skewH Skewness of canopy height. Negative skewness – the distribution 

dominated by higher points (upper canopy is dominant) but a few 

extreme lower points, positive skewness - the distribution dominated 

by lower points (lower canopy is dominant) but a few extreme higher 

points, (points > 1.3m). 

kurH Kurtosis of canopy height. Negative kurtosis – the distribution 

centered on mean values (mid-canopy is dominant), without much 
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higher or lower canopy, positive kurtosis – the distribution heavy on 

tails, with more at the high and low ends and less in the center (lower 

and upper canopy is dominant), (points > 1.3m).  

p_05, p_10, p_25, 

p_50, p_75, p_90, 

p_95, p_99 

Canopy height percentiles. Canopy height percentile here was 

defined as the height below which a specified percentage of total 

point clouds were located, (points > 1.3m). For example, p_05 = 2.0 

m means that 5% of vegetation points found below 2 m. Vegetation 

density is higher at p_05 = 2.0 m than p_05 = 3.0 m. 

vci_2m, vci_5m, 

vci_10m, vci_15m, 

vci_20m 

Vertical complexity indexes (VCI) at 2m, 5m, 10m, 15m, 20m height 

bins, (points > 1.3m).  

Vertical complexity indexes (VCI) at 2m, 5m, 10m, 15m, 20m 

height bins, (points > 1.3m).  

𝑉𝑉𝑉𝑉𝑉𝑉 = (−� [(𝑝𝑝𝑖𝑖 ln(𝑝𝑝𝑖𝑖)]))/ln (𝐻𝐻𝐻𝐻)
𝐻𝐻𝐻𝐻

𝑖𝑖=1
 

Where VCI in a vertical complexity index, HB is the total 

number of height bins, and pi is the proportional abundance of 

LiDAR returns in height bin i.   

A VCI value close to one indicates that most height bins have equal 

amount of vegetation. VCI value decreases if the distribution of 

canopy in the height bin becomes more uneven (van Ewijk et al., 

2011). 

cov Fraction of canopy cover, (points > 1.3m).  

height_cv Coefficient of variation of height, (points > 1.3m). Indicates the 

canopy height variation. 

canopy_roughness Canopy roughness describes complexity/variability of canopy height 

(Herrero-Huerta et al., 2020) (points > 1.3 m). Higher variability in 

the canopy height provides higher roughness index and vice versa. 

canopy_shannon Normalized Shannon diversity index of canopy (Pretzsch, 2009), 

(points > 1.3m). Indicates canopy height diversity. 

tvolume Total vegetation volume (m3) – number of 0.5 m3 voxels divided by 

8 (ground points excluded). 

vlayer_L1 Vegetation volume (m3) in 1st layer (points 0-1m¸ ground points 

excluded). 
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vlayer_L2 Vegetation volume (m3) in 2st layer (points 1m-10m). 

vlayer_L3 Vegetation volume (m3) in 3st layer (points 10m and above). 

meanH_L1, 

meanH_L2, 

meanH_L3  

Mean height of 1st, 2nd, 3rd layer. 

sdH_L1, sdH_L2, 

sdH_L3 

Standard deviation of vegetation height in 1st, 2nd, 3rd layer. 

roughness_L1, 

roughness_L2, 

roughness_L3 

Roughness indexes of 1st, 2nd, 3rd layer (Jenness, 2004). Horizontal 

distribution of vegetation across different layers. 

vci_L1, vci_L2, 

vci_L3 

Vertical complexity indexes of 1st, 2nd, 3rd layer (van Ewijk et al., 

2011). Vertical distribution of vegetation across different layers. 

Statistical analysis 

Bird data  
We calculated bird abundance (maximum number of individual birds counted), species richness 

(cumulative total number of species), Shannon diversity index using “vegan” R package (Jari Oksanen, 

2019) and functional diversity indices including functional richness, functional evenness, functional 

divergence, functional dispersion and Rao's quadratic entropy for each site using “FD” package 

(Laliberté and Legendre, 2010) in R language (R Team, 2019). Shannon diversity index is used to 

characterize species diversity in a community (Morris et al., 2014). Functional richness defined as the 

amount of niche space occupied by the species within a community. Functional evenness measures the 

regularity of the distribution of species abundances and dissimilarities in a functional space. Functional 

divergence is the degree to which abundance distribution in niche space maximizes divergence in 

functional characters within the community (Mason et al., 2005). Functional diversity indices quantify 

the trait diversity and act as a surrogate for the diverse ecological functions performed in the 

community. Rao's quadratic entropy measures the diversity of ecological communities and is based on 

the proportion of the abundance of species in a community and a measure of dissimilarity between the 

species (Ricotta and Szeidl, 2009). The diversity of trait values within a community is therefore 

referred as either trait diversity or functional diversity (FD) (Karadimou et al., 2016).  

Bird guilds were assigned based on different functional traits (i.e., grassland specialist, water bird, 

woodland generalist, woodland specialist), nesting substrate (i.e., arboreal, ground, hollow, 
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opportunistic, understory), foraging substrate (i.e., air, aquatic, arboreal, ground, opportunistic), and 

dispersion (low, partial, high). 

Model selection process 
A key stratifying unit of the plots established in our study area were the clusters, which were comprised 

of four vegetation types (HTHS, HTLS, LTLS, LTHS) (Manning et al., 2011). We first explored the 

ability of ULS and TLS data to correctly classify plots according to these vegetation categories. We 

used a multinomial regression model using “multinom” function in “nnet” R package (Venables and 

Ripley, 2003) for this analysis. We tested two models, one based on the first four principle components 

calculated from all the TLS and ULS LiDAR variables and a model based on selected TLS and ULS 

LiDAR variables.  

To select the variables for the selected-variable model, we first used a correlation matrix based 

Principal Component Analysis (PCA) (Kassambara, 2017) to visualize the data and plotted the 

contribution of each variables to first two principal axes using factoextra R package (Mundt, 2020) 

(Fig. 5). To avoid strong collinearity between 37 LiDAR variables, we then selected variables that 

were not highly correlated (0.7 maximum threshold) in keeping with other studies (Dormann et al., 

2013) (Sasaki et al., 2016). Pearson correlation matrices of TLS and ULS variables are provided in 

Appendix 1 and Appendix 2 respectively. When selecting between two highly correlated variables, we 

attempted to select for the most ecologically meaningful variable (e.g. average height (meanH) and 

75th percentile height (p_75) resulted in a selection for average height”). We also selected at least one 

variable from each layer and several canopy metrics to cover all strata of vegetation in the landscape. 

Our assumption was that bird communities and trait groups rely on different layers of vegetation 

volume or structural complexity and we wanted to capture that range in the selected variables. All 

explanatory variables were standardized so that they have a mean of zero (“centering”) and standard 

deviation of one (“scaling”) (Becker et al., 1988). This ensures that the estimated coefficients are all 

on the same scale, making it easier to compare effect sizes. 

We tested the performance of both the 12 selected variables and the first four PCA variables to 

investigate relationships between the LiDAR metrics and overall bird abundance, species richness and 

diversity. For the remainder of our analyses, we used the model type that most accurately classified 

the plots into their appropriate landscape class. 
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Figure 5. Contribution of TLS (left) and ULS (right) LiDAR variables for the first and the second PCA 

axis 

  

Overall bird abundance, species richness and diversity  
To evaluate which LiDAR based vegetation structural variables had the strongest relationship to bird 

abundance, species richness, species diversity, and functional diversity of birds across plots, we fitted 

linear mixed effects models with lmer function in lme4 package in R (Bates et al., 2015). Mixed models 

extend the basic linear model such that they recognize grouped or nested structures in data by random 

effects (Melin et al., 2018). In these models, predictor variables were the selected vegetation structural 

metrics (fixed effects) and 24 polygons by four vegetation classes (random effects). Response variables 

were bird abundance, species richness, species diversity and functional diversity indexes. We also 

tested the performance of the first four principle components (PCA1, PCA2, PCA3, PCA4) calculated 

from all LiDAR metrics as explanatory variables in these model to see how it preformed compared to 

the selected variables model that we used for all analyses.  

Bird abundance within functional guilds  
Correlations between bird abundance within functional traits and vegetation structural metrics were 

evaluated using Poisson distribution Generalized Linear Mixed Effects Models (GLMM) with glmer 

function in lme4 R package (Bates et al., 2015). Explanatory variables for these models were selected 

vegetation structural variables (fixed effects) and 24 clusters by four vegetation classes (random 

effects), where abundance within functional guilds were response variables.  

Individual bird species abundance  
The relationship between individual bird species abundance and LiDAR structural metrics were also 

examined using GLMMs. In these models, explanatory variables were the selected TLS and ULS 
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LiDAR variables (fixed effects) and 24 clusters by four vegetation classes (random effects), and 

response variables were the abundance of each different bird species in our dataset. An overview of 

variable selection and modelling is provided in Fig. 6. 

 

 
Figure 6. Variable selection and modelling workflow  

Examination of model fit 
We used Residual Diagnostics for HierARchical Models (DHARMa) package (Hartig, 2017) for 

examining the model fit, dispersion,  zero-inflation, residual spatial and temporal autocorrelation 

problems. Marginal and conditional R2 were calculated to evaluate proportion of variance explained 

by fixed and mixed effects for models by species and guilds (Nakagawa et al., 2013). 

Examination of each model revealed that some models did not converge. By further evaluating these 

models, we found that those models had very few count data in species abundance or functional traits. 

To solve this, we retained the species or guilds that had at least 10% count data across the sites. This 

means that each species or guild should have counts at 10 or more sites to be valid for modelling. Of 

an original 84 individual bird species, 51 species across 16 functional guilds occurred in at least 10 

sites for modelling. If the model convergence issue persisted, which happened in five individual 

species abundance models, we were able to resolve this by decreasing the number of fixed effects by 

removing those with the lowest explanatory values.  

Significance of predictor variables for each model were demonstrated by z score with significance 

threshold of z = 1.96 (equal to p < 0.05).  
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Results 

Statistical analysis produced several interesting outcomes including number of birds and species 

richness, relationship between TLS and ULS derived vegetation structural variables, power of TLS 

and ULS data for predicting different vegetation classes and more importantly association between 

LiDAR variables and avian species in community and individual species level. Details have been 

provided in following subsections. 

Bird data 

A total of 12117 birds observations (5540 in Mulligan’s Flat and 6577 in Goorooyarroo nature 

reserves) from 84 bird species were observed from the double surveys each year across the three year 

period from 2017 to 2019. A maximum of 238 birds and 36 species and a minimum of 42 birds and 10 

species were counted in any one site (Table 2). 

Table 2. Basic statistics from bird data across plots. Abundance - bird abundance, SR - species richness, 

Bird_shannon - shannon diversity, FRic – functional richness, FEve – functional evenness, FDiv – 

functional diversity, FDis – functional dispersion, RaoQ -  Rao’s quadratic entropy 

Statistics Abundance SR Bird_shannon FRic FEve FDiv FDis RaoQ 

Maximum 238.00 36.00 3.22 0.09 0.82 0.96 0.29 0.09 

Mean 126.22 21.97 2.63 0.01 0.67 0.87 0.24 0.07 

Stdev 42.60 5.91 0.35 0.02 0.07 0.04 0.02 0.01 

Median 121.50 22.00 2.69 0.01 0.67 0.87 0.24 0.07 

Minimum 42.00 10.00 1.68 0.00 0.50 0.78 0.17 0.04 

Variable selection 

The Pearson correlation matrix showed that most of the TLS and ULS variables are strongly correlated 

to each other (r > 0.7) (Fig. 7). Only the L1 metrics and lower strata canopy metrics showed a weak 

correlation (r < 0.3) .  
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Figure 7. Correlation matrix of TLS (Y axis) and ULS (X axis) variables 

 

Our variable selection method resulted 12 out of 37 LiDAR metrics being selected for the models. 

Basic statistics for these TLS and ULS variables are provided in Figure 8. 
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Figure 8. Boxplots represent a basic statistics of selected TLS and ULS variables 

 

Predicting vegetation classes from the LiDAR dataset 

Multinomial regression models showed that selected LiDAR variables provided better accuracy in 

predicting vegetation classes than the first four PCA variables for both TLS and ULS data. Moreover, 

selected ULS variables provided better results in vegetation type classification than the TLS variables 

with 71.3% and 67.0%, respectively (Table 3 and Table 4). For both TLS and ULS datasets, models 

were better at classifying HTHS and LTLS vegetation classes than HTLS and LTHS vegetation 

classes. Overall, the results of multinomial model shows that some of the predefined vegetation types 

could be accurately classified with LiDAR. In addition, ULS LiDAR data classified vegetation classes 

with slightly higher accuracy overall than the TLS data in this woodland landscape.   

Table 3. Confusion matrix for vegetation classes prediction modelling using TLS LiDAR variables 

Vegetation classes were predicted from the first four 
PCA variables calculated from all TLS LiDAR variables 

User's 
accuracy 

(%) 

Vegetation classes were predicted 
from 12 selected TLS LiDAR 
variables  

User's 
accuracy 

(%)   HTHS HTLS LTHS LTLS HTHS HTLS LTHS LTLS 
HTHS 21 5 6 4 58.3 26 5 6 3 65.0 
HTLS 3 3 1 0 42.9 2 6 0 0 75.0 
LTHS 6 5 9 0 45.0 1 3 9 3 56.3 
LTLS 0 3 4 24 77.4 1 2 5 22 73.3 

Producer's 
accuracy (%) 70.0 18.8 45.0 85.7   86.7 37.5 45.0 78.6   
Classification 
accuracy (%) 60.6 67.0 
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Table 4. Confusion matrix of vegetation classes prediction modelling using ULS LiDAR variables 
Vegetation classes were predicted from the first 
four PCA variables calculated from ULS LiDAR 
variables 

User's 
accuracy 

(%) 

Vegetation classes were predicted 
from 12 selected ULS LiDAR 
variables  

User's 
accuracy (%) 

  HTHS HTLS LTHS LTLS  HTHS HTLS LTHS LTLS  
HTHS 24 4 13 3 54.5 25 3 4 1 75.8 
HTLS 3 5 1 2 45.5 3 8 2 1 57.1 
LTHS 3 3 1 0 14.3 1 4 11 3 57.9 
LTLS 0 4 5 23 71.9 1 1 3 23 82.1 

Producer's 
accuracy (%) 80.0 31.3 5.0 82.1   83.3 50.0 55.0 82.1   
Classification 
accuracy (%) 56.4 71.3 

 

Overall bird abundance, species richness and diversity 

Models from selected LiDAR variables performed better than PCA models from all LiDAR variables 

in predicting overall bird abundance, species richness and diversity. The variance explained by fixed 

effects for overall bird abundance, species richness and diversity models was higher (mean R2 = 0.158) 

for the models built from selected LiDAR variables than the PCA variables (mean R2 = 0.056) 

(Appendix 3, 4). Because of this and also considering that selected LiDAR variables predicted 

vegetation classes better than the PCA model from all LiDAR variables (Table 3 and Table 4), we 

decided to use the selected variable models for the remainder of our analyses.  

The linear mixed effects model for the overall bird abundance did not find a significant relationship to 

any of the 12 selected variables from the ULS or TLS data (Appendix 4, “Abundance”, Fig. 9). Bird 

species richness (SR) was positively related to several TLS-derived variables including mean height 

(meanH. P < 0.01), and skewness (skewH, P < 0.05) and variation of canopy height (height_cv, P < 

0.01) and negatively correlated to mean height of third layer (meanH_L3, P < 0.01). However, total 

vegetation volume (tvolume) was the only significant predictor (P < 0.05) among the ULS selected 

variables for predicting bird species richness (SR). Bird diversity (Bird_shannon) was positively 

significantly influenced by TLS and ULS mean canopy height (meanH, P < 0.01 (TLS), P < 0.05 

(ULS)) and total volume (tvolume, P < 0.05 (TLS), P < 0.05 (ULS)), and negatively influenced by 

mean height of third layer (meanH_L3, P < 0.01 (TLS), P < 0.05 (ULS)) (Appendix 4, “Bird_shannon, 

Fig. 9). Among the functional diversity indexes, functional evenness (FEve) was negatively correlated 

to only TLS-based vegetation complexity between 10 and 15 meter canopy height (vci_15m, P < 0.05 

(TLS)). However, vci_15m derived from TLS (P < 0.01) and ULS (P < 0.05) data was significantly 

negatively related to functional divergence. Functional dispersion (FDis) and Rao's quadratic entropy 

(RaoQ) were negatively influenced by TLS and UAV – derived vegetation complexity between 1.3 m 
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and 2 m (vci_2m, P < 0.05) and 10 m and 15 m (vci_15m, P < 0.05), and positively related to ULS – 

based vegetation complexity in the first layer of vegetation (vci_L1, P < 0.01) (Appendix 4, Fig. 9). 

 
Figure 9. Plot illustrates the significance of predictor variables (by z value) for predicting overall bird 

abundance, species richness and diversity. Point symbols represent predictor variables. Horizontal 

orange line shows the significance threshold (z = 1.96, or p < 0.05) of predictors. 

 

Bird abundance within functional guilds  

Table 5 describes basic statistics about bird abundance within functional guilds. Most of the surveyed 

birds belong to the woodland specialists habitat class (WS.HC, n = 8725), nested in hollows (Hol.Nest, 

n = 4668), foraged in the trees (Arb.Forage, n = 6649) and displayed low dispersal (Low.Disp, n 

=8187). 

  



51 
 

Table 5. Basic statistics about bird abundance within functional traits across plots 

Statistics 
GS. 
HC 

WB. 
HC 

WG. 
HC 

WS. 
HC 

Arb. 
Nest 

Grnd. 
Nest 

Hol. 
Nest 

Opp. 
Nest 

Usty. 
Nest 

Air. 
Forage 

Aqu. 
Forage 

Arb. 
Forage 

Grnd. 
Forage 

Opp. 
Forage 

Low. 
Disp 

Partial. 
Disp 

Sum 238 83 2868 8725 6174 44 4668 749 279 165 83 6649 2879 2138 8187 3722 
Maximum 17 14 106 200 148 11 159 31 24 28 14 141 98 71 210 118 
Mean 2.53 0.88 30.51 92.82 65.68 0.47 49.66 7.97 2.97 1.76 0.88 70.73 30.63 22.75 87.10 39.60 
Stdev 3.14 2.35 20.33 34.72 28.19 1.59 32.00 7.93 4.81 4.08 2.35 27.53 18.98 13.64 34.44 23.14 
Median 1.50 0.00 26.50 86.00 62.50 0.00 40.00 6.00 1.00 0.00 0.00 65.00 25.00 19.50 84.50 37.50 
Minimum 0 0 2 28 11 0 5 0 0 0 0 19 5 1 29 3 

 

All of the 16 guilds were significantly correlated to one or more LiDAR variables, and some guilds 

showed a stronger response to landscape structure than others (Appendix 5, Fig. 10). Models from 

TLS data explained between 8.5% and 39.9% (mean of 22.6%) variability, and ULS models explained 

between 6.8% and 40.8% (mean of 23.5%) variability in abundance of birds across functional guilds.  

The most robust TLS-based explanatory models were the water bird habitat class (R2=0.399) and 

aquatic foragers abundance (R2=0.399), which were positively correlated to meanH (P < 0.05), skewH 

(P < 0.05) and vci_5m (P < 0.01), and negatively correlated to maxH (P < 0.05) and meanH_L3 (P < 

0.05). The ground nesting guild model from TLS data explained substantial variance (R2 = 0.338), and 

was negatively influenced by maxH (P < 0.01) and positively influenced by skewH (P < 0.05), tvolume 

(P < 0.05) and vci_L2 (P < 0.01). The TLS-based opportunistic foraging model was the third best at 

explaining variance in the data (R2 = 0.310). That model was negatively correlated to maxH (P < 0.05), 

meanH (P < 0.05), skewH (P < 0.05) and height_cv (P < 0.001) and strongly positively correlated to 

canopy_roughness (P < 0.001) and meanH_L3 (P < 0.001) (Appendix 5, Fig. 10).  

The ULS-based models also performed best for aquatic foraging and water bird habitat guilds (R2 = 

0.408), which were positively related to vci_5m (P < 0.001), vci_15m (P < 0.001) and vci_L1 (P < 

0.05). The next best performing ULS guild model was for woodland generalist abundance (R2 = 0.370) 

and was positively associated with maxH (P < 0.01) and vci_L1 (P < 0.001). The ULS model also 

explained substantial variance in abundance of ground nesting birds (R2=0.355), which were positively 

influenced by meanH (P < 0.05) and skewH (P < 0.05), but negatively related to maxH (P < 0.05) 

(Appendix 5, Fig. 10).  

The contribution of explanatory variables to the functional guilds models 
Canopy roughness (canopy_roughness) was the best predictor variable for the TLS- based models with  

a significant correlation to 10 functional guilds followed by skewH, maxH and meanH height of canopy 

and meanH_L3 (Fig. 10). The best predictor variables for ULS-based models were vci_5m – 

significantly correlated to 9 guilds, maxH, canopy_roughness and vci_L1 (Fig. 10). 
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Figure 10. Plot illustrates the significance of predictor variables (by z value) for predicting bird 

abundance by functional guilds. Point symbols represent predictor variables. Horizontal orange line 

shows the significance threshold (z = 1.96, or p < 0.05) of predictors. Habitat class (grassland 

specialist, water bird, woodland generalist, woodland specialist), nesting substrate (arboreal, ground, 

hollow, opportunistic, understory), foraging substrate (air, aquatic, arboreal, ground, opportunistic), 

and dispersion (low, partial, high) groups. 

Individual bird species abundance 
Mixed – effects Poisson regression models showed that the abundance of forty-nine out of fifty one 

bird species responded to TLS and ULS – derived vegetation structural variables (Appendix 6). Only 

Grey Shrike Thrush and Pallid Cuckoo abundance showed no relationship to any TLS or ULS LiDAR 

structural variables. For the TLS-based models, canopy_roughness was significantly related to the 

abundance of 16 bird species, followed by tvolume, which was related to the abundance of 15 bird 

species (Fig. 11). In the ULS models, vci_L1 related to bird species abundance more than any other 

variable (22 bird species), followed by canopy_roughness (17 bird species) (Fig. 11).  The explained 

variance of TLS models ranged from 4.2% to 81.7% with an average of 31.1%. Similarly, ULS-models 

explained 4.9% to 83.4% (mean = 30.5%) of variation in bird species abundance.  
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Figure 11. Plot illustrates the significance of predictor variables (by z value) for predicting individual 

bird species abundance. Point symbols represent predictor variables. Horizontal orange line shows the 

significance threshold (z = 1.96, or p < 0.05) of predictors. 
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The model for Nankeen Kestrel abundance was the best performing TLS model (R2 = 0.817), and was 

strongly correlated to vci_15m (P < 0.05), canopy_roughness (P < 0.05), meanH_L3 (P < 0.05) and 

vci_L2 (P < 0.05) and negatively related to meanH (P < 0.05) and tvolume (P < 0.001) (Appendix 6, 

Fig 11). The second best TLS model was Spotted Pardalote abundance (R2 = 0.772) which was 

correlated to maxH (P < 0.01), meanH (P < 0.05), skewH (P < 0.001) and tvolume (P < 0.05). White 

Throated Treecreeper abundance was also strongly related to TLS LiDAR-derived vegetation structure 

(R2 = 0.739) and had a positive relationship to skewH (P < 0.05), vci_15m (P < 0.05), tvolume (P < 

0.05) and vci_L2 (P < 0.05), and a negative relationship with maxH (P < 0.05) and vci_5m (P < 0.05) 

(Appendix 6, Fig 11). 

The best performing ULS model was for Varied Sittela abundance (R2 = 0.834), which was explained 

by maxH (P < 0.05), meanH (P < 0.05), skewH (P < 0.01) and meanH_L3 (P < 0.05). The White 

Throated Treecreeper abundance model (R2 = 0.777) showed significant correlation with meanH (P < 

0.05), skewH (P < 0.01), canopy_roughness (P < 0.001), meanH_L3 (P < 0.01) and vci_L1 (P < 0.05). 

Likewise, the Sacred Kingfisher abundance model explained 76.2% variance and was related to maxH 

(P < 0.01), meanH (P < 0.01), skewH (P < 0.01), meanH_L3 (P < 0.01), vci_L1 (P < 0.05) and 

height_cv (P < 0.05) (Appendix 6, Fig. 11). 

Overall, TLS and ULS data produced very similar results in predicting individual bird species 

abundance, and this was demonstrated by the linear relationship between the explained variances of 

TLS and ULS models (Fig. 12). 

  
Figure 4. The relationship between explained variance (R2) calculated from TLS and ULS based 

Poisson distribution mixed model for predicting individual bird species abundance.  

Discussion   

For the first time, we used high resolution LiDAR imagery from ULS and TLS platforms in a woodland 

landscape to investigate relationships between LiDAR-derived structural metrics and overall bird 
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abundance, bird abundance within guilds, species richness and other biodiversity metrics. Although 

both approach produced promising results, multinomial regression models from 12 selected variables 

were better at classifying sites according to their four vegetation types than the PCA models. Hence, 

our first hypothesis on TLS and ULS data can be used to accurately classify field-estimated vegetation 

classes was strongly supported. Overall, bird abundance was not significantly related to any TLS or 

ULS LiDAR-derived variables and this may be due to the number of different bird species that 

occupied a wide variety of structural niches in the landscape (Lesak et al., 2011). Models for predicting 

bird species richness, biodiversity and abundance within functional guilds performed better than 

overall bird abundance. However, the scale at which bird species richness and biodiversity metrics 

respond to structure, due to the presence of multiple species that use multiple spatial scales, may not 

be accurately reflected in site-level LiDAR metrics (Seavy et al., 2009). Some individual bird species 

abundance models were able to explain a very large amount of variability in abundance, which is 

promising for using this data for habitat assessments and improving our understanding of habitat 

requirements for threatened species in particular. Canopy roughness, vertical complexity of the first 

layer, total vegetation volume and canopy height were the variables that were most strongly associated 

with bird community and individual species abundance. Our assumption that higher density LiDAR 

point clouds from the TLS platform would create better models than the lower density, airborne ULS 

data was not supported by our data. This was likely influenced by low-lying occlusions in the data that 

were more substantial for the TLS than the ULS owing to the positing of the sensors and the 

characteristics of the woodland landscape (Olschofsky et al., 2016). As a result, the ULS generally 

provided better results for predicting the abundance of individual bird species and guilds that forage 

on the ground than the TLS based on our methodology. We discuss the overall finding in more detail 

below and provide recommendations for future research.  

Overall bird abundance, species richness and diversity 

Despite some variation in bird abundance being explained by TLS and ULS structural metrics, 

abundance was not significantly related to any of the predictors (Appendix 4). This may be due to 

contrasting habitat requirement across the large suite of different species included in the total 

abundance tally (Wiens and Rotenberry, 1981). Models for predicting bird species richness did find 

significant relationships to some variables but these were dependent on the data source (TLS or ULS). 

Species richness was significantly positively related to TLS canopy height diversity and upper canopy 

height. The only ULS predictor that was significantly positively related to bird species richness was 

the total volume of vegetation. The TLS sensor may be able to capture more meaningful canopy height 

variation for birds than the ULS data owing to the position of the sensor under the canopy, which 
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allows it to detect more detail from vegetation below the canopy. Species diversity prediction models 

from TLS and ULS data provided similar results. Overall, canopy height and total volume showed the 

strongest relationship to the bird diversity indices (Appendix 4), but canopy height variation 

(height_cv) was only significant in TLS-based metrics. This further supports the idea that the TLS 

sensor was able to capture canopy height variation in a more meaningful way for bird habitat quality, 

probably owing to the positioning of the sensor (Ashcroft et al., 2014, Blakey et al., 2017). 

Nonetheless, the higher density TLS data did not perform better than the ULS data in terms of overall 

ability to explain variance in this data. Therefore, our first hypothesis that high density TLS LiDAR 

point clouds will perform better for modelling overall bird abundance, species richness and diversity 

than lower density ULS point clouds was not supported.  

Generally, our results from species richness and diversity models agree with relationships identified 

in previous studies (Clawges et al., 2008, Lesak et al., 2011, Sasaki et al., 2016). Earlier study by 

Clawges et al. (2008) found a significant correlation between ALS LiDAR-derived canopy height 

diversity and bird species diversity. Similarly, ALS LiDAR – derived canopy height and mid-story 

density and height has been associated with song bird species richness (Lesak et al., 2011). Notably, 

these studies reported relatively low overall explained variance (R2 <= 0.2), which is also in keeping 

with our findings. The typically low explained variance for community level data (e.g., bird species 

richness and diversity) in these models may be due to a mismatch in scale, since some of the bird 

species frequently use landscape areas beyond the plot level that have different overall structural 

characteristics. Bird occurrence and habitat relationships can be scale-dependent (Seavy et al., 2009, 

Weisberg et al., 2014). Weisberg et al. (2014) investigated multiscale habitat heterogeneity and bird 

occurrence using LiDAR data, and they found the strongest associations at a 200 m (4 ha) scale and 

the weakest associations at a 50 m (0.25 ha) scale. A similar study on multiscale analysis using LiDAR 

derived canopy height measurements (Seavy et al., 2009) found that specific bird species responded 

differently to vegetation structure at different spatial scales. Future studies should revisit this dataset 

at a variety of scales.   

Modelling bird abundance within functional guilds  

All of the functional guilds that we analyzed were significantly related to LiDAR derived vegetation 

structural metrics. Generally, TLS and ULS data achieved similar results in predicting functional guild 

abundance (mean R2 = 0.235 and mean R2 = 0.226, respectively). A few earlier studies have also used 

remote sensing to investigate relationships between bird functional guilds and vegetation structure, but 

they used species richness within guilds, rather than species abundance within guilds (Lesak et al., 

2011, Lee et al., 2017). For example, ALS - derived vegetation measures have been used for estimating 
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songbird species richness by nesting, foraging and edge preferring guilds (Lesak et al., 2011). In that 

study, models using structural metrics from ALS data explained between 7.0% and 16.1% of the 

variance in species richness in nesting guilds, whereas our study explained between 8.5% and 33.7% 

(TLS) and 6.8% and 35.5% (ULS) variance in the abundance of birds from various nesting guilds. 

Another study also found significant relationships between canopy height and density variables and 

foraging guilds (Lesak et al., 2011). Our models showed that bird abundance by functional guilds are 

significantly influenced by canopy height variables, canopy roughness and vertical complexity of 

vegetation in the ground layer. Notably, the ULS models found strong correlations between ground 

foraging guilds and ground-layer vegetation structure, but the TLS models did not show this 

relationship. The ULS may capture more structural heterogeneity due to less occlusion in the ground-

layer in an open woodland than the TLS. As a result, a portion of our second hypothesis that overall, 

TLS data will perform better than ULS data in predicting avian functional guild abundance is rejected, 

despite the higher point density of TLS.  

Modelling individual bird species abundance 

The relationship between specific vegetation structural metrics and the abundance of certain bird 

species may be useful for future management and conservation efforts, particularly for vulnerable 

species. In many cases, the link between the structural metrics and specific bird species can be easily 

explained by their habitat preference, lending more weight to this relationship. For example, we found 

that the abundance of the vulnerable Superb Parrot (Polytelis swainsonii, Nature Conservation Act 

2014) is positively influenced by TLS-derived maximum height of trees and ULS-derived maximum 

height of trees and the complexity of the first layer vegetation and negatively influenced by horizontal 

distribution of canopy (canopy roughness). Separate studies have found that Superb Parrots use large 

trees for nesting and breeding and ground vegetation for foraging (Manning et al., 2004a). In addition 

to the Superb Parrot, our LiDAR-derived structural models also performed very well in predicting the 

abundance of two other threatened species, the White-winged Triller (Lalage tricolor, Nature 

Conservation Act 2014), and the Varied Sittella (Daphoenositta chrysoptera, Nature Conservation Act 

2014).  

Some woodland sensitive birds also responded to the LiDAR derived vegetation structural metrics. 

For example, Brown Thornbill (Acanthiza pusilla) species found in sparse eucalypt woodlands (Stagoll 

et al., 2010) was negatively correlated to canopy roughness and mean height of canopy (Appendix 6, 

Fig 10). Noisy Miners (Manorina melanocephala) are less likely to occur in areas with high shrub 

cover (Crates et al., 2018), and our noisy miner model also found a significant negative relationship to 

shrub layer vegetation (Appendix 6). 
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On the other end of the extreme, we found no relationship between our site-level structural variables 

and the abundance of the Grey Shrike-thrush (Colluricincla harmonica) or Pallid Cuckoo (Cacomantis 

pallidus). These common species are widely distributed across Australia and use habitat at large spatial 

scales and across a wide range of landscape types. If relationships between these species and specific 

structural variables are to be found, then it is more likely to be at larger spatial scales than our 1 ha 

site-level metrics. Overall though, the individual bird species models from both TLS and ULS 

performed better than the community based models and that’s notable because habitat is a species 

specific concept (Manning et al., 2004b, Betts et al., 2014). In trying to understand the structural 

requirements of wildlife using LiDAR data, it may be best to focus on individual species rather than 

overall abundance or diversity (Manning et al., 2004b). Contrasting requirements from multiple 

species may frustrate attempts to model relationships to structural vegetation data (Halstead et al., 

2019).    

Overall, ULS models generally outperformed TLS models in predicting the abundance of birds from 

species that were positively or negatively influenced by ground-layer vegetation complexity. Out of 

51 bird species, ULS ground-layer vegetation structure was important for 22 species, compared to 13 

species for the TLS models (Appendix 6, Fig. 10). The abundance of ground foraging birds such as 

Yellow-rumped Thornbill, Yellow-faced Honeyeater, Sulphur-crested Cockatoo, Superb Parrot, Red-

rumped Parrot, Little Corella were significantly influenced by ground layer vegetation complexity for 

ULS but not TLS data (Appendix 6, Fig 10). This might be related to the occlusion of TLS laser pulses 

by ground vegetation (LaRue et al., 2020) and the ability of ULS to capture ground vegetation structure 

in an open woodland due to the open canopy architecture of this landscape (Yebra et al., 2015). As 

expected though, we did find that some species that depend on canopy strata such as Buff-rumped 

Thornbill, Eastern Rosella, Red-rumped Parrot and Red Wattlebird were significantly associated with 

more ULS canopy variables than TLS. For these reasons, our hypothesis that the relationship between 

landscape structural data and particular bird species will be modelled more accurately from the TLS 

data for bird species that are most associated with ground and mid-story vegetation layers and the ULS 

data for species that primarily use the canopy strata is only partially supported. 

Limitations of this study 

Although we attempted to compare the performance of TLS and ULS data in modelling bird habitat, 

this study has some limitations that should be mentioned. To start with, we collected 7 scans of TLS 

data over 1 ha sites, and this is a relatively low number of scans compared to the recent studies that 

used more than 16 scans in 1 ha sites (Wilkes et al., 2017, Levick et al., 2021). However, most of those 

studies used only a few hectares of study areas which makes more scans of data collection and post-
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processing feasible. As we had 96 × 1 ha sites, collecting and processing more TLS scans would take 

a lot more time which would have a negative impact on completing the bigger study at the right time. 

On the other hand, more TLS scans would decrease incident angle (angle between the incoming laser 

pulse and surface normal) which would allow to capture dense vegetation and ground more accurately, 

and this would significantly reduce occlusion (Soudarissanane et al., 2009). Unlike TLS scans, ULS 

is able to send laser beams with small incident angles and therefore captures ground layers more 

accurately.  

Furthermore, Topcon GLS2000 is a single return LiDAR sensor, and this is also an important 

constraint of this sensor as a multiple return TLS sensor might have penetrated occluding dense 

vegetation (Wilkes et al., 2017). Ability of the ULS sensor to record multiple returns provided another 

advantage over the TLS sensor. We acknowledge that these factors are important and might have a 

significant influence on the results. 

Conclusion 

Our models showed strong relationships between the abundance of many individual bird species and 

TLS and ULS LiDAR derived vegetation structural metrics. This type of data can be useful for 

identifying habitat requirements for a variety of bird species (Graf et al., 2009). Understanding the 

landscape-scale that species use and matching this to the scale of LiDAR structural metrics may 

improve our ability to identify relationships between remotely sensed vegetation structure and wildlife 

(Seavy et al., 2009). This is the first study that uses both ULS and TLS data for investigating 

relationships between a wide range of bird population data and vegetation structure in a woodland 

landscape. According to Bakx et al. (2019) there hasn’t been any study in Australia to model avian 

abundance and species richness using LiDAR data before. 

This study revealed several landscape structural metrics from LiDAR dataset including vegetation 

volume, canopy height variability and vegetation complexity that are related to bird abundance and 

species richness. We also found that some bird species use the different layers of vegetation while 

others depend on the landscape scale.  

ULS is faster, and can easily capture structural metrics across wide areas, whereas TLS can provide 

highly detailed point-clouds, but requires more time to collect. Our findings show that ULS, in most 

cases, performed as well or better than TLS in this landscape type and based on our methodologies. 

However, TLS models may be improved by using more scan stations to reduce occlusions. Ability of 

our ULS sensor to record multiple returns per laser beam might be a significant advantage over the 

TLS sensor as it helped to penetrate the upper canopy and capture structural details on the ground and 

mid-story. Higher point density TLS LiDAR data in itself does not offer an advantage over lower point 
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density ULS data if the coverage is less complete and the landscape type allows a ULS sensor to view 

lower strata vegetation to successfully model structural associations between plants and animals.  
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Abstract 

Coarse woody debris (CWD), or fallen logs, are known to be an essential habitat element for many 

organisms. CWD also supports ecosystem functioning through soil formation, nutrient cycling, and 

carbon storage. For these reasons, accurate assessments of CWD across landscapes are of interest to 

many ecologists and landscape managers, but traditional field-based measurements can be time-

consuming and sampling strategies may not be representative of entire landscapes. Light detection and 

ranging (LiDAR) technologies may be able to provide a more rapid assessment of the number and 

volume of CWD across wide-areas. However, most research using LiDAR for forest and woodland 

inventory assessment has focused on standing wood and only recently, have a few studies focused on 

measuring CWD. Detection accuracy of CWD with LiDAR can be impacted by the point density of 

LiDAR data, ground layer vegetation and sensor positioning relative to other vegetation or landscape 

structural features. We used high resolution terrestrial laser scanner (TLS), UAV (unoccupied aerial 

vehicle) laser scanner (ULS) and a combination of data from both sensors (Fusion) to estimate CWD 

in a grassy woodland ecosystem. The study area comprised plots with different amounts of vegetation 

cover and different types of CWD, both naturally occurring and introduced including dispersed, 

clumped or a mixture of both types. This enabled a more detailed exploration of model performance 

across sensor types, vegetation types and ground cover biomass. A random forest (RF) classification 

algorithm and noise removing operations on raster imagery were used to classify CWD. Completeness 

and correctness accuracy with the developed method were highly variable depending on the data and 

ground vegetation cover, and ranged between 20% and 86%, and 12% and 96%, respectively in 

comparison with field data. LiDAR derived digital surface model (DSM), surface roughness and 

topographic position index were important variables for CWD detection. We found that the detection 

accuracy of CWD varied with the type and amount of ground vegetation cover and LiDAR data. 

Ground cover density had a strong negative impact on accuracy, particularly for TLS and Fusion data. 

Introduction 

Coarse Woody Debris (CWD), or fallen dead trees, are an important structural component in forest 

ecosystems that provide habitat for plants and animals. CWD provides shelter, nesting areas and a 

foraging substrate for many bird, reptile and mammal species (Harmon et al., 2004, Manning et al., 

2013). CWD also has a role in multiple aspects of ecosystem functioning including soil formation, 

nutrient cycling, and carbon storage (Harmon et al., 2004, Woldendorp and Keenan, 2005, Manning 

et al., 2013). CWD is a naturally occurring feature of forests and woodlands, but it is often removed 
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for firewood or lost through land-clearing or other landscape management practices (e.g., post-logging 

burning of forests) (West et al., 2008).  

The loss of CWD from an ecosystem causes a reduction or loss of the associated biodiversity and 

ecological processes over short and long time periods (Manning et al., 2013). The natural accumulation 

rate of CWD is usually very slow and depends on a number of factors including tree genetics, stand 

age and anthropogenic or natural disturbance (Vandekerkhove et al., 2009). Restoring CWD is an 

increasingly common intervention to support biodiversity conservation and improve other ecosystem 

services such as carbon storage and soil improvement (Manning et al., 2004a).  

Measuring the amount, volume, diameter and length of CWD is important for monitoring this resource 

and estimating habitat quality for a number of CWD dependent organisms (Harmon et al., 2004). 

Traditional field-based methods of CWD data collection are usually restricted to transects and plots, 

which are time-consuming and may not accurately represent the entire area from which the subsample 

is taken (Harmon et al., 2004, Lopes Queiroz et al., 2020). Thus, remote sensing may be a valuable 

tool to overcome these drawbacks and quantify CWD across wide-areas. A few studies have attempted 

to classify and quantify CWD using aerial multispectral imagery (Smikrud and Prakash, 2013, 

Windrim et al., 2019). However, shading and canopy occlusion interfere with the ability of 

multispectral imagery to map CWD in many environments (Blanchard et al., 2011, Richardson and 

Moskal, 2016).  

The rapidly developing technology of Light Detection and Ranging (LiDAR) offers an alternative 

remote sensing technique for mapping CWD by capturing three-dimensional landscape structure and 

vegetation (Pasher and King, 2009, Marchi et al., 2018). LiDAR can be used from airborne or 

terrestrial platforms and the combined data from both platforms may help overcome occlusion issues 

unique to the perspective of airborne or terrestrial sensors. LiDAR uses a laser light to measure the 

distance between the sensor and ground features. A single pulse emitted from a LiDAR sensor can 

capture structural information from different layers of vegetation, including upper canopy, lower 

canopy and other elements near the ground (Lefsky et al., 2002, Bergen et al., 2009).  

Relatively few studies have used LiDAR to quantify CWD, since most LiDAR-based measurements 

of forest and woodland structure have focused on standing wood. However, as this technology 

becomes more accessible, ecologists are increasingly interested in using LiDAR technology for 

investigating important below canopy structural habitat features such as CWD (Pesonen et al., 2009, 

Lopes Queiroz et al., 2020). A small number of studies have identified some LiDAR based metrics 

that may be useful for mapping CWD. For example, Pesonen et al. (2009) predicted CWD volume 
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from Airborne laser scanner (ALS) derived canopy height percentiles using regression analysis, and 

Mücke et al. (2013) utilized surface roughness features derived from full-waveform and discrete return 

ALS data to classify CWD. In addition, Object Based Image Analysis (OBIA) has been successfully 

applied using Trimble eCognition software to ALS derived raster images for automatically delineating 

CWD in disturbed open forest (Blanchard et al., 2011). Lopes Queiroz et al. (2019, 2020) performed 

geographic object based image analysis (GOBIA) with a random forest (RF) classifier in eCognition 

commercial software using a ALS derived digital surface model, canopy height model and aerial 

multispectral imagery to classify CWD. Their research is the first and only previous study 

that used RF models with combined ALS and multispectral imagery to detect CWD. Notably, data 

from unoccupied aerial vehicle laser scanners (ULS) has not been used in any prior assessments of 

CWD.  

LiDAR-derived raster images are more often used for automatically classifying CWD (Marchi et al., 

2018), but a few studies have attempted to extract CWD from high density terrestrial LiDAR point 

cloud data (Polewski et al., 2017, Yrttimaa et al., 2019). For instance, Polewski et al. (2017) used a 

statistical framework to fit a cylinder shape over a TLS data to detect CWD. Yrttimaa et al. (2019) 

also used a cylinder fitting algorithm on TLS point cloud data followed by raster image filtering to 

quantify the number and volume of CWD. Despite some successes, accurate detection of CWD below 

the canopy using LiDAR technology remains a challenging task and depends largely on the point 

density of LiDAR data cloud and surrounding vegetation height and density (Polewski et al., 2017).  

All of the above mentioned studies found a negative impact of ground vegetation cover on CWD 

detection accuracy; however, most were conducted in optimal low groundcover conditions with a 

single sensor type, so it was not possible to compare model performance across different amounts of 

vegetation cover or with data collected from different sensors. For the first time, we look at the effects 

of ground vegetation cover on model performance using ULS, TLS and a combination of data from 

both sensors (Fusion). We utilized surface topographic variables derived solely from high resolution 

LiDAR datasets as inputs into RF in open source R language to test a novel approach to classify 

and quantify CWD.  

The aim of this study was twofold:  

1) To investigate the performance of Random Forest (RF) machine learning algorithms to 

quantify CWD from commonly used LiDAR derived topographic surface variables.  
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2) To test the influence of vegetation type and ground cover on CWD detection accuracy using 

UAV (unoccupied aerial vehicle) LiDAR (ULS), terrestrial LiDAR (TLS) and a fusion of both 

LiDAR datasets (Fusion). 

Materials and methods 

Study Area 

This study was conducted in Mulligan’s Flat (683 ha) and Goorooyarroo (702 ha) (MFGO) nature 

reserves, located in the north-eastern corner of the Australian Capital Territory (ACT), (35°09' S-

149°09' E; Fig. 1). Elevation ranges between 650-700 meters with a gently undulating topography that 

includes low rolling hills interspersed with plains and flats (McIntyre et al., 2010). These two adjacent 

wildlife reserves were established in 1994 and 2006, respectively, to conserve and restore a critically 

endangered yellow box–Blakely’s red gum grassy woodland ecosystem (Manning et al., 2011). 

Restoration activities include, but are not limited to, the introduction of CWD, pest exclusion fences 

and the reintroduction of previously locally extinct native species (Manning, Cunningham, and 

Lindenmayer 2013). 

As part of on-going experimental restoration work at MFGO, 96×1 ha (200 m × 50 m) sites were 

established across both reserves in 24 clusters and include four different vegetation types: 1) high tree, 

high shrub cover (HTHS), 2) high tree, low shrub cover (HTLS), 3) low tree, low shrub cover (LTLS), 

and 4) low tree, high shrub cover (LTHS) (Manning et al. 2011) (Fig.1). In October 2007, two-

thousand tonnes of CWD were distributed across 72 sites in both reserves. The remaining sites with 

no introduced CWD served as controls. Treatments were: (a) 20 tonnes/ha added with dispersed CWD, 

(b) 20 tonnes/ha added with clumped CWD, and (c) 40 tonnes/ha added with both dispersed and 

clumped CWD (Manning et al., 2007) (Figs. 1 and 2). Detailed information on the addition of CWD 

is provided in (Manning et al., 2013). 
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Figure 5. Map of the study area. 1) Australia, 2) Australian Capital Territory, 3) Mulligan's Flat and 

Goorooyarroo Nature Reserves showing experimental restoration sites with different treatments of 

coarse woody debris (CWD). 
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Figure 2. Images of dispersed (a) and clumped (b, c) coarse woody debris in low (a), medium (c), and 

high (b) ground vegetation cover categories.  

 

TLS data collection and post - processing 

We collected TLS data with a high-density terrestrial laser scanner (Topcon GLS2000, Topcon 

Corporation, Japan) that emits near-infrared light (1064 nm) laser pulses at up to 120,000 laser pulses 

per second. The field-of-view of the scanner is 360° horizontally and 270° vertically. A single laser 

pulse has a beam diameter of 4 mm at 60 m. Data was collected from 7 scan stations in each 50 m × 

200 m plot in a zigzag formation with approximately equal spacing (33 m) between the stations. The 

number and arrangement of scan stations was determined by a pilot study to identify the optimal 

number and arrangement of scans to characterise all 96 sites within a one month timeframe (Shokirov 

et al., 2020, Shokirov, 2021). From the 1st to 31st  of October 2018, TLS LiDAR data was acquired 

across all 96 × 1 ha sites for a total of 672 scans with 6 mm at 10 m scanning resolution and 1.7 m 

scanning height. The position of each scan was measured with a differential GPS (Trimble Geoexplorer 

6000 series) and post-processing was performed using local base station data to improve the location 

accuracy to approximately 0.5 m. 
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Point clouds from the seven individual scan stations for each plot were co-registered using the Multi-

station Adjustment (MSA) plugin in RiScan Pro software (RIEGL Laser Measurement Systems 

GmbH). Co-registering point clouds with MSA consists of two steps: manual and automatic 

registration. First, point clouds from two scans were manually coarsely aligned by using the 

overlapping objects (trunks, trees and shrubs) in both scans. Then, automatic registration was 

implemented which uses at least four identical points from overlapping areas of two scans. MSA uses 

the iterative closest points (ICP) algorithm that minimises the 3D distance between the identical points 

by translating and rotating the entire point cloud along x, y, z axes until the least minimum distance 

between the identical points from two dataset is achieved (Šašak et al., 2019). Then the position and 

orientation of the first and second scan were locked and the same procedure was performed to register 

the third scan to the initial two scans. 

Next, the point cloud from each site was georeferenced using DGPS locations of each scan position 

measured in the field and clipped to the spatial extent of the 96 sites individually. Point clouds were 

then subsampled into 1 cm spacing to homogenize the point distributions and duplicate points were 

removed using Cloud Compare (CloudCompare 2.10.2). 

ULS data collection and post-processing 

We obtained ULS data across all of the 96 sites in fine weather conditions from the 7th until the 14th 

of November, 2018. The ULS LiDAR platform consisted of a hexacopter integrated with a RIEGL 

miniVUX-1 UAV LiDAR sensor (RIEGL Laser Measurement Systems GmbH, Austria) and an APX-

15 INS/GNSS system (Trimble, USA). ULS data was acquired at approximately 80 m above the take 

off point at approximately 7 m s-1, with up to 5 returns per pulse, 100 kHz pulse repetition rate, and up 

to 100,000 measurements/second. The maximum scan angle of the LiDAR sensor was approximately 

±60⁰ with swath width of approximately 100 m. On average, the four adjacent plots were covered by 

500 × 500m flight area which included 11 parallel lines and one diagonal flight line on the return to 

landing. We used DJI ground station pro V2 to plan the flight missions (SZ DJI TECHNOLOGY CO., 

2018). The ULS LiDAR sensor failed to collect data on two 1 ha sites, which were excluded from 

further analysis of ULS and TLS data. Data processing was done in RiPROCESS software suite from 

RIEGL to bring in the trajectory data of the drone flight, align the flight paths, geo-reference the point 

cloud and then export it in ASPRS LAS format. The trajectory data of the UAV LiDAR that was 

ingested into RiPROCESS was generated using POSPAC UAV (Applanix) using the IMU/GNSS data 

from the drone and RINEX data from the base station, which was obtained from the Gungahlin location 

of Smartnet global network.  
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The ULS LiDAR data collected over the 94 sites were clipped by corresponding polygons to create 

separate point clouds for each site. In general, point spacing in ULS data across 94 sites ranged from 

5 cm to 17 cm with an average of 10 cm. For this reason, we homogenized the point cloud with 10 cm 

spacing and removed duplicate points using Cloud Compare (CloudCompare 2.10.2). 

Field data 

Field data collection for ground-truthing the model outputs was conducted in June, 2020. Eighteen 

sites were selected that included the three CWD types and four different vegetation types across both 

reserves. CWD in our research is defined as the downed dead wood including tree trunks and branches 

at least 2 m in length and 0.1 m in diameter. The minimum diameter of 0.1 m was determined based 

on the point spacing of ULS data (approximately 10 cm), which indicated that ULS should be able to 

capture CWD with at least 0.1 diameter and this aligned with the minimum size identified in other 

studies as well (Pesonen et al., 2009, Farnell et al., 2020). The length of 2 m is commonly used for 

defining of CWD for forest inventory (Grizzel et al., 2000, Edwards, 2004). The location of the centre 

of each individual log was recorded with a differential GPS (± 3 m accuracy). For clumped logs, a 

single location at the nearest midpoint of the clump was measured. Photos of each clumped and 

dispersed CWD were also taken. 

The volume of each CWD was calculated using the cylinder volume equation: 

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑙𝑙 × 𝜋𝜋 × (𝑑𝑑 2� )2    Equation (1) 

Where,  𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 - volume of CWD, 𝑙𝑙 - length of CWD, 𝑑𝑑  - diameter in the middle of the full length of 

CWD, 𝜋𝜋 - mathematical constant. 

To estimate the influence of ground cover on CWD detection accuracy, sample sites were divided into 

three different ground cover categories: Low (< 400 kg/ha), Medium (400 kg/ha - 800 kg/ha) and High 

(> 800 kg/ha) (Fig. 2). This classification was based on an earlier study (McIntyre et al., 2010), which 

estimated total biomass (kg/ha) of native and exotic plants across the 96 sites at MFGO. Although this 

previous study was conducted in 2010, the differences in ground vegetation cover were primarily 

driven by vegetation species and herbivore exclusion fencing at a subset of sites, which have not 

changed over this period, and this was confirmed through a visual comparison of sites to their earlier 

classification by McIntyre et al (2010).  
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Merging the TLS and ULS data 

A fused dataset (Fusion) was created from TLS and ULS data first by manually adjusting and then 

automatically co-registering the data from both sensors using the Iterative Closest Point (ICP) 

algorithm in CloudCompare (CloudCompare 2.10.2).  

Noise reduction, normalization and subsetting the point clouds 

TLS, ULS and Fusion point clouds were cleaned for noise with lasnoise with step 0.30 (TLS and 

Fusion) and step 0.50 (ULS) parameters. Point clouds were classified into ground and non-ground 

points using the lasground tool in LAStools (Isenburg 2012). Lasground uses progressive, 

Triangulated Irregular Network (TIN) densification methods to classify ground points (Montealegre 

et al., 2015). Different settings of lasground were trialed and the resulting ground and non-ground 

points were visually assessed across different plots. This was important because improper filtering of 

ground points might result in incomplete or false CWD surface points. The final selected lasground 

setting were as follows: step 2, extra_fine, not_airborne, compute_height, replace_z for TLS and 

Fusion dataset and the same parameters except without not_airborne for ULS dataset (Isenburg 2012). 

Using field measurements, it was found that the height of almost all of the CWD was less than 1 m. 

Thus a subset of point clouds of all 94 sites was created by removing the points above 1.3 m to provide 

an additional height buffer.  

CWD extraction workflow 

Calculating DHM and other topographic variables 
 CWD classification involved machine learning methods with imagery data. First a 0.1 m grid-size 

digital surface model (DSM) was created from all returns below 1.3 m using las2dem (Isenburg, 2012) 

for all three datasets (TLS, ULS and Fusion). The las2dem module of LAStools first creates a 

Triangulated Irregular Networks (TIN) and then generates an interpolated raster image from TIN 

(Khosravipour et al., 2014, Stereńczak et al., 2016). After testing several parameters, “elevation” and 

“step 0.1” were chosen to create the DSM. In addition, a parameter of “kill 0.25” was used to avoid 

creating the DSM from triangles with edge longer than 0.25 m. This was done to avoid creating false 

planar objects in occluded areas in the plot that might have caused false positives in the RF model. To 

reduce the noise and generate a smoothed DSM, a Gaussian Filter algorithm in SAGA (Conrad et al., 

2015) was used with the following parameters (standard deviation 1, search mode: square, search 

radius: 3). Subsequently, DSMs from all dataset were imported to RStudio environment and five 

topographical variables were calculated to characterize the shape of relief from DSM using a raster 
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package (Hijmans, 2020). An 8×8 moving window on the underlying DSM layer was used to compute 

slope and aspect variables. All six variables were stacked together to create a six band raster image. 

Previous studies have found these variables useful for characterizing the spatial heterogeneity of 

landscape surfaces (Amatulli et al., 2018). The list of variables and their descriptions are shown in 

Table 1. In addition, the relationship between the topographic variables derived from TLS, ULS and 

Fusion datasets were examined using Pearson’s correlation (Appendix 1). 

Table 5. Description of topographic variables. 

Variable name Description 

Digital surface model 

(DSM) 

0.1 m grid calculated from normalized points below 1.3 m using 

TIN interpolation method (Isenburg, 2012). 

Roughness Roughness is calculated as the largest inter-cell difference of a 

focal cell and its 8 neighboring pixels (Amatulli et al., 2018) 

Slope Slope expresses the degree of elevation change in the direction of 

the steepest descent (Amatulli et al., 2018). 

Aspect Aspect is the orientation of slope. It is measured clockwise in 

degrees from 0 to 360, where 0 is north-facing, 90 is east-facing, 

180 is south-facing, and 270 is west-facing (Amatulli et al., 2018). 

Topographic 

ruggedness index (TRI) 

TRI is the average of the absolute differences in elevation between 

a focal cell and its neighboring cells. Zero values correspond to 

flat surfaces whereas positive values correspond to mountain areas 

(Amatulli et al., 2018) 

Topographic position 

index (TPI) 

TPI compares the elevation of a focal cell and the mean of its 8 

neighboring cells. Positive values represent ridges, negative 

values correspond to valleys and zero values correspond to flat 

areas (Amatulli et al., 2018).  

Training data preparation 

To create a training dataset, CWD, shrub and grass classes were delineated based on the visual 

interpretation of DSM and its shaded relief data using QGIS software (QGIS, 2020). Training samples 

distributed across the landscape from each class (CWD, shrub, and grass) were collected from most of 

the 94 sites to avoid spatial autocorrelation in the training dataset (Millard and Richardson, 2015). To 

avoid imbalanced data, which can negatively impact classification accuracy (Maxwell et al., 2018), 
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approximately 300 samples per class were collected. A distance of at least 8 m between the classes 

was kept to avoid spatial interpolation, as recommended (Millard and Richardson, 2015).  

Random forest classification 
Random Forest (RF) is a widely used machine learning technique for classifying remote sensing data 

(Guo et al., 2011, Millard and Richardson, 2015). Many studies found that machine learning algorithms 

produce higher accuracy remote sensing classifications than traditional pixel based algorithms like 

maximum likelihood (Duro et al., 2012, Maxwell et al., 2018).  

We ran RF classifications using the ‘caret’ package (Kuhn, 2020) in R statistical software (Team R, 

2013). The caret package provides a standard syntax to execute a variety of machine-learning methods 

(Maxwell et al., 2018). The RF is a tree-type classification algorithm which utilizes a set of decision 

trees to make a prediction (Breiman, 2001, Belgiu and Drăguţ, 2016). First, training data are created 

by delineating small subsets of polygons as a sample of target classes on an image. Then, the algorithm 

trains the data by generating multiple decision trees where each tree is trained based on randomly 

sampling the variables in the original training data set (Belgiu and Drăguţ, 2016). Each decision tree 

will come up with a rule to predict a target class. Each tree produces a vote to a target class and these 

votes will be counted and the majority vote of trees will be used for classification (Breiman, 2001, 

Friedman et al., 2001).  

Two parameters of the RF model can be tuned by the user: the number of decision trees (T) and the 

number of variables (M) randomly chosen at each split. However, multiple studies have found that 

tuning the number of T manually does not impact the accuracy of the results as long as the number of 

T is large enough (>300) (Probst and Boulesteix, 2017, Maxwell et al., 2018). Therefore, we selected 

a conservative number of 500 T in the caret package (Maxwell et al., 2018). The default setting of 

three randomly chosen variables M was kept at each split.  

A previous study found that highly correlated predictor variables reduced the classification accuracy 

(Millard and Richardson, 2015). Hence, Pearson’s correlation was used to calculate pair-wise 

correlations between the predictor variables, and variables that were highly correlated (r > 0.9) to any 

other predictor variable were removed (Millard and Richardson, 2015). To test model performance, 

training samples were split into training and testing datasets using proportional stratified random 

sampling. Approximately 70% of the samples were used to train the data using the RF algorithm and 

the remaining 30% of the data were reserved as a “hold-out” to test the classification accuracy (Duro 

et al., 2012). Model performance was examined with out-of-bag error (OOB) and confusion matrixes 

to estimate classification accuracy between predicted and observed data in the hold-out 30% 
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independent validation data (Millard and Richardson, 2015). We also evaluated the importance of 

predictor variables for the classification accuracy using OOB. 

Post-classification refinement and shape analysis 
Remote sensing data classification often requires post-classification improvement to reduce noise from 

classification maps (Droppova, 2011, Boz et al., 2015). We used the Majority Filter tool in ArcMAP 

(ESRI, 2011) for smoothing the image. Majority filter replaces cells in a raster based on the majority 

of their contiguous neighboring cells, and as a result, most of the isolated pixels will be assigned to a 

surrounding class. Then, only CWD class pixels were converted to polygon shapefiles using the Raster 

to Polygon conversion tool in ArcMAP. After the polygon smoothing algorithm, polygons with areas 

greater than 0.2 m2 and less than 25 m2 were selected. These thresholds were derived from the 

minimum area of CWD (0.1 m width and 2 m length) and visual interpretation of DSM and polygons, 

respectively. Elongated objects were extracted by creating a minimum bounding box for each polygon 

and the width and length of each box was calculated. Then, bounding boxes with lengths of less than 

2 m were removed. Finally, polygons within remaining bounding boxes were selected using Select by 

Location tool in ArcMAP. 

Calculating volume of CWD 
A Zonal Statistics tool in QGIS software (QGIS, 2020) was used to calculate a volume for each 

detected CWD. This tool calculates several values including mean value of all pixels, number of all 

pixels and sum of pixels from DSM for each overlapping polygon. Volume of CWD was derived from 

the following equation:          

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴2 × 𝑀𝑀 × 𝐶𝐶    Equation (2) 

Where, 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − volume, 𝐴𝐴 − pixel size, 𝑀𝑀 − mean value of all pixels within a polygon, 𝐶𝐶 − number 

of pixels within a polygon. 

Consequently, total CWD volume for each site was calculated using the sum of all CWD volume in 

the site. 

Classification accuracy assessment 
Classification accuracy was performed by comparing the CWD vector map and field-measured 

coordinates of each CWD in the 18 validation sites. DSM, DSM-based shaded relief and photos from 

the field were also used to assist with accuracy assessments. For each of the 18 sample sites, Producer’s 

accuracy (completeness) and User’s accuracy (correctness) were estimated using Equations 3 and 4, 
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respectively (Mücke et al., 2013). To evaluate the accuracy of estimated CWD volume, field data of 

CWD volume from each plot and detected CWD volume (excluding FP), and detected total CWD 

volume (including FP) were compared. We excluded FP to determine the accuracy of CWD volume 

estimates where CWD is correctly detected. To assess the impact of FP in estimated CWD volume, we 

then included both TP and FP in accuracy assessment. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)�     Equation (3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇 (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)�     Equation (4) 

Where, a True Positive (TP) is a CWD that is detected by the method and is recorded in the field data, 

a False Positive (FP) is a CWD that is detected but is not recorded in the field data, and a False Negative 

(FN) is a CWD that is not detected but is present in the field data.  

The difference between the detected and ground measured CWD volume were estimated using the 

coefficient of determination (R2) and the Root Mean Square Error (RMSE, Equation 5). The CWD 

detection workflow is provided in Figure 3.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �[∑(𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛
]   Equation (5) 

Where, Σ symbol indicates “sum”, Pi is the predicted volume for the i th observation, Oi is the observed 

volume for the i th observation, n is the sample size. 
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Figure 3. Workflow of coarse woody debris (CWD) extraction method, including software and 

packages used. Terrestrial laser scanner (TLS), an unoccupied aerial vehicle laser scanner (ULS) and 

fused ULS and TLS (Fusion) datasets include points below 1.3 m.  

Results 

CWD field data 

We measured a total of 998 CWDs from 18 sites for ground-truthing. The average amount of CWD in 

a site was 55, the max amount was 93 and the min amount was 33. Sites with dispersed and clumped 

CWD had the same number on average (n = 47 and n = 46, respectively), but combined (clumped and 

dispersed in the same site) had a substantially higher number of CWD on average (n = 71). The length 

of CWD ranged from 2 m to 14 m (mean of 4.1m), and diameter in the middle of the long axis ranged 

from 0.1 m to 0.9 m (mean of 0.3 m). The volume of a single CWD varied from 0.02 m3 to 3.98 m3 

(mean value of 0.37 m3) (Appendix 2). 



82 
 

Variable selection and comparison across TLS, ULS and Fusion data types  

Pearson’s pair-wise correlations between the predictor variables indicated that surface terrain 

ruggedness index and slope correlated highly with other variables (r > 0.9) (Appendix 3). Hence, they 

were removed and the remaining variables, DSM, Roughness, Topographic Position Index (TPI) and 

Aspect raster images, were used as predictors in the RF classification.           

Pearson’s correlation was also used to investigate the relationship between TLS, ULS and Fusion 

derived surface topographic variables (Appendix 1). ULS and Fusion typically demonstrated stronger 

correlation among common variables than ULS and TLS but substantially less than TLS and Fusion 

(Appendix 1). TPI and aspect showed the weakest correlations across the data types. The highest 

correlation among variables was observed between TLS and Fusion, with > 0.8 correlation between 

the two data types for DSM, slope, TRI and roughness (Appendix 1). 

Accuracy assessment of RF model 

RF classification was performed on the aforementioned four predictor variables and training samples. 

Overall classification accuracy of the independent testing data varied between different sensors with 

TLS (72.5%), ULS (75.5%) and Fusion (78.2%) (Table 2). Confusion matrices, which describe 

correctly and incorrectly classified pixels of the predicted classes compared to the testing dataset, 

indicated that the model performed best in classifying grass classes (> 80.2%) but had a lower 

classification accuracy for CWD ( > 67.9%) and shrub classes (> 66.9%) (Table 2).   

Table 6. Random forest (RF) classification accuracy. Confusion matrices describe comparison between 

the predicted classes of pixels by RF model and independent testing data. Both predicted and testing 

dataset represent the number of pixels. a) Terrestrial laser scanner (TLS), b) an unoccupied aerial 

vehicle laser scanner (ULS), c) fused TLS and ULS (Fusion) data. 

a) 

Pr
ed

ic
te

d 
da

ta
 

Hold-out testing data 

  CWD Shrub Grass User's accuracy 

CWD 6592 2574 541 67.9% 

Shrub 2946 6559 295 66.9% 

Grass 616 425 6346 85.9% 

Producer's accuracy 64.9% 68.6% 88.4%   

Overall accuracy 72.5% 
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b) 

c) 
 

Pr
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te
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ta
 

Hold-out testing data 

  CWD Shrub Grass User's accuracy 

CWD 21941 5257 2968 72.7% 

Shrub 3194 8128 100 71.2% 

Grass 3744 859 19509 80.9% 

Producer's accuracy  76.0% 57.1% 86.4%   

Overall accuracy 75.5% 

Pr
ed

ic
te

d 
da

ta
 

Hold-out testing data 

  CWD Shrub Grass User's accuracy 

CWD 15243 3974 2792 69.3% 

Shrub 2947 13969 497 80.2% 

Grass 3760 3185 32397 82.3% 

Producer's accuracy  69.4% 66.1% 90.8%   

Overall accuracy 78.2% 

 

The OOB errors produced by RF for an accuracy assessment using the independent (hold-out) testing 

data as well as measures of variable importance based on the mean decrease in accuracy when a 

variable is not used in building a tree are presented in Figure 4. OOB error is lowest for the grass class 

and higher for shrub and CWD classes across different sensor data. Average OOB error is lowest for 

Fusion data (≈22%) and higher for ULS (≈25%) and TLS (≈28%) data. Overall, accuracy assessment 

by OOB error is consistent with the confusion matrix described in Table 2. 



84 
 

 

Figure 4. Random forest accuracy assessment of terrestrial laser scanner (TLS), an unoccupied aerial 

vehicle laser scanner (ULS), fused TLS and ULS (Fusion) data for classifying coarse woody debris 

(CWD), Grass and Shrubs with out-of-bag (OOB) error. OOB is calculated by comparing classified 

training dataset with excluded (out-of-bag) training dataset (in our case, one third of training data were 

left-out from training). 

In general, DSM and surface roughness were the most important predictor variables in classifying 

CWD, shrubs and grass (Fig. 5). DSM, roughness and TPI were comparably important for identifying 

CWD from all three types of data. Surface aspect had the weakest prediction power for classifying all 

classes (Fig. 5).   

    

a) b) 
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Figure 5. Predictor variable importance for random forest classification of three landscape features 

(coarse woody debris (CWD), shrub and grass) with LiDAR data from (a) terrestrial laser scanner 

(TLS), (b) an unoccupied aerial vehicle laser scanner (ULS) and (c) fused TLS and ULS data (Fusion). 

Digital surface model (DSM), topographic position index (TPI), topographic ruggedness index (TRI). 

Accuracy assessment of CWD counts 

Overall accuracy 
Both sensors produced comparable completeness accuracy in counting the number of CWD and 

exhibited large variations in accuracy between sites (TLS = 19.6% to 75.0%, average of 57.0%, ULS 

= 32.8% to 82.2%, average of 57.8%) (Table 3). However, correctness accuracy for TLS was slightly 

higher (11.9% to 96.2%, average of 55.5%) than ULS (29.4% to 81.1% average of 51.7%). Fusion 

data outperformed single sensors in counting CWD for both completeness and correctness accuracy 

(averages = 67.0% and 55.6%, respectively), indicating that co-registering TLS and ULS sensor data 

improved the accuracy for this measure (Table 3).  

  

c) 
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Table 7. Overall completeness and correctness of coarse woody debris (CWD) counts in eighteen 

independent validation sites using data from a terrestrial laser scanner (TLS), an unoccupied aerial 

vehicle laser scanner (ULS), fused TLS and ULS (Fusion) data. Sites included four vegetation types 

(1) high tree, high shrub cover (HTHS), 2) high tree, low shrub cover (HTLS), 3) low tree, low shrub 

cover (LTLS), and 4) low tree, high shrub cover (LTHS)) and three ground vegetation densities (high, 

medium, low).  

Site Veg 
class 

CWD 
type 

Ground 
veg. type 

TLS ULS Fusion 
Complete-
ness 

Correct-
ness 

Complete-
ness 

Correct-
ness 

Complete-
ness 

Correct-
ness 

MF11A-4 LTHS clumped High 66.7 43.1 60.6 60.6 66.7 41.5 
MF11A-2 LTHS combined Medium 66.2 41.0 46.2 81.1 64.6 50.6 
MF11A-3 LTHS dispersed Medium 60.6 40.0 40.6 39.4 60.6 48.8 
MF27A-2 LTHS dispersed Low 71.4 73.5 64.7 40.7 82.9 76.3 
MF22A-2 HTHS clumped High 63.2 22.6 65.8 46.3 60.5 24.5 
MF22A-3 HTHS dispersed High 48.7 11.9 56.4 47.8 56.4 27.2 
MF22A-4 HTHS combined High 64.4 25.4 82.2 41.1 46.7 20.8 
MF34-1 HTLS clumped Low 46.6 87.2 55.4 62.1 72.6 75.7 
MF34-4 HTLS combined Medium 50.5 30.9 61.5 64.1 54.8 49.0 
MF34-3 HTLS dispersed Low 61.3 70.8 60.5 75.4 48.6 58.1 
WG150A-3 HTLS clumped Low 69.6 44.4 56.5 33.3 76.1 47.3 
WG150A-2 HTLS dispersed Low 62.7 30.8 58.8 29.4 62.7 53.3 
WG63A-1 LTLS combined Medium 75.0 94.7 72.2 71.2 86.1 72.1 
WG63A-4 LTLS combined Low 69.9 96.2 56.8 64.6 71.6 84.1 
WG148-3 LTLS combined Medium 38.0 85.7 58.8 58.0 75.9 81.1 
WG148-4 LTLS dispersed Medium 55.8 78.4 39.6 30.0 69.2 65.5 
WG148-2 LTLS clumped Medium 19.6 30.3 66.0 33.3 68.6 60.3 
WG92-3 LTLS clumped Low 35.1 92.9 37.8 51.9 81.1 65.2 

      Max 75.0 96.2 82.2 81.1 86.1 84.1 

      Min 19.6 11.9 37.8 29.4 46.7 20.8 

      Mean 57.0 55.6 57.8 51.7 67.0 55.6 

      Median 62.0 43.8 58.8 49.8 67.6 55.7 
 

CWD count accuracy by varied ground cover density 
Ground vegetation cover had the biggest impact on CWD detection accuracy for the TLS sensor (Table 

4). We found a roughly similar completeness accuracy across the sites with differing amounts of 

ground vegetation. However, ground vegetation had a big influence on correctness accuracy for TLS 

and Fusion and to a lesser extent for ULS based counts (Table 4) (Fig. 6).  
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Table 8. Coarse woody debris (CWD) count accuracy by low, medium and high density ground 

vegetation sites. Terrestrial laser scanner (TLS), an unoccupied aerial vehicle laser scanner (ULS), 

fused TLS and ULS (Fusion) data. 

Ground 
vegetation 

density 

 
TLS 

 

 
ULS 

 
Fusion 

Completeness Correctness Completeness Correctness Completeness Correctness 
Low 59.5 70.8 55.8 51.1 70.8 65.7 
Medium  52.2 57.3 55.0 53.9 68.6 61.1 
High  60.7 25.8 66.3 49.0 57.6 28.5 
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Figure 6. Shaded relief (top) and mapped coarse woody debris (CWD) (bottom) images of one sample 

site with combined CWD. Cyan dots indicate locations of CWD measured in the field, red polygons 

represent classified CWD. Images are from (a) terrestrial laser scanner (TLS), (b) an unoccupied aerial 

vehicle laser scanner (ULS) and (c) fused TLS and ULS (Fusion) dataset. 

CWD count accuracy by vegetation cover types 
Our method achieved comparable average completeness accuracy from different sensor data across 

LTHS, HTHS and HTLS vegetation types (Table 5). However, Fusion data provided significantly 

higher average completeness accuracy in plots with the LTLS vegetation type compared to the TLS 

and ULS data. HTHS vegetation type had a stronger negative impact on the correctness accuracy of 

CWD counts from TLS and Fusion data than ULS data (Table 5).  

a) b) c) 
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Table 9. Coarse woody debris (CWD) count accuracy by four vegetation types: low tree high shrub 

(LTHS), high tree high shrub (HTHS), high tree low shrub (HTLS), low tree low shrub (LTLS). 

Terrestrial laser scanner (TLS), an unoccupied aerial vehicle laser scanner (ULS), fused TLS and ULS 

(Fusion) data. 

Vegetation 
types 

 
TLS 

 
ULS 

 
Fusion 

Completeness Correctness Completeness Correctness Completeness Correctness 
LTHS  66.2 49.4 53.0 55.5 68.7 54.3 
HTHS  58.8 20.0 68.1 45.1 54.5 24.1 
HTLS  58.2 52.8 58.5 52.9 63.0 56.7 
LTLS 48.9 79.7 55.2 51.5 75.4 71.4 

 

CWD volume accuracy 
Using only True Positives, predictions of CWD volume was best achieved by ULS (R2 = 0.70, RMSE 

= 6.9 m3) and Fusion data (R2 = 0.67, RMSE = 5.7 m3). Predicted volume from TLS data with only 

True Positives had a relatively weak correlation with observed volume (R2 = 0.43, RMSE 8.5 m3) (Fig. 

9, a). The predicted CWD volume was overestimated across all sensors.  

When considering both True Positives and False Positives, there was a weak correlation between 

predicted and observed CWD volume from all types of data (Fig. 7, a1, b1, c1). The relationship 

between predictions of CWD volume and field based CWD volume for TLS (R2 = 0.05, p = 0.36) and 

Fusion (R2 = 0.21, p = 0.059) data was not significant at the 95% confidence level. However, ULS 

data performed better than the other data types in predicting CWD volume with data that included True 

and False positives (R2 = 0.26, p = 0.032). False Positives had a strong negative effect on calculating 

CWD volume (Fig. 7, a1, b1, c1).  
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Figure 7. Relationship between observed and detected coarse woody debris (CWD) volume across the 

three data types; (a, a1) terrestrial laser scanner (TLS), (b, b1) an unoccupied aerial vehicle laser 

scanner (ULS), (c, c1) fused TLS and ULS (Fusion) data. (a, b, c) are true positives only. (a1, b1, c1) 

are true and false positives. 

Discussion  

To our knowledge, this is the first study that used data from TLS, ULS and a fusion of both sensors 

(Fusion) to classify CWD across a variety of vegetation types and different amounts of ground 

vegetation cover. We used a RF machine learning classification algorithm with DSM and DSM-based 

surface variables to extract CWD from other ground attributes including grass and shrubs. The models 

performed best for classifying grass cover, followed by CWD and shrubs, with significantly varied 
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results depending on the type of data. Our model indicated that LiDAR derived DSM, surface 

roughness and TPI variables contributed the most to classifying CWD. The ability to quantify CWD, 

in number and volume, showed variable success and large differences across sensors and landscape 

types.  

While there are advantages of combining sensor data to obtain more complete coverage, particularly 

where TLS data has occlusions from ground vegetation and ULS may not be able to completely 

penetrate the dense canopy vegetation, in situations with high vegetation ground cover, the ULS 

platform outperformed TLS and Fusion data in the open woodland landscape. Against our 

expectations, Fusion data did not improve the model on sites with higher ground cover. However, 

Fusion data from sites with low tree and low shrub (LTLS) cover resulted in the most accurate CWD 

counts with our methodology.  

A recent study classified CWD in a boreal forest using RF classifier with higher accuracy (>90%), but 

ground vegetation density was lower and the effects of vegetation cover were not assessed (Lopes 

Queiroz et al., 2019). That study utilized a combination of optical imagery and ALS LiDAR derived 

DSM and although model performance was good, accuracy assessments were based on cross-

validation alone, rather than an independent testing dataset of field measured CWD (Lopes Queiroz et 

al., 2019). While ALS has shown promise in CWD assessments like these, the ability of ALS imagery 

to detect CWD smaller than 0.3m diameter is typically poor, due mainly to low point density and beam 

foot-print size (Marchi et al., 2018). In addition, although LiDAR can provide a number of surface 

variables, those studies used only LiDAR based DSM as an input variable (Blanchard et al., 2011, 

Lopes Queiroz et al., 2019). In this study, we found that, in addition to DSM, other surface variables 

such as roughness, aspect, topographic position index can contribute to improve CWD classification 

accuracy.  

Effects of vegetation type and ground cover on model performance 

Many previous studies have mentioned that ground cover can impact the ability of LiDAR sensors to 

detect and measure CWD (Polewski et al., 2017, Marchi et al., 2018). However, none have attempted 

to compare the accuracy of LiDAR-based CWD models across different ground cover densities. Our 

study examined this impact by including sites with high, medium and low ground cover biomass. As 

expected, high ground cover biomass resulted in more false positives in the classification and counts 

of CWD, which substantially decreased correctness accuracy and this effect was strongest in the TLS 

and Fusion data compared to ULS data (Table 4). In addition, models from ULS data performed better 

than TLS or Fusion models in sites with the most ground vegetation biomass, which was demonstrated 
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by a lower number of false positives. The ULS sensor obtained data from above the sites, and this 

improved the classification of CWD, which may have been obscured by dense vegetation features on 

the ground when LiDAR data was obtained from a sensor positioned at the ground. For this reason, 

with the proposed method, TLS sensors may not be appropriate for detecting CWD in a landscape with 

high ground vegetation cover. Notably, we collected 7 TLS scans in each site, which was the minimum 

number of scans required to characterize each 200 m × 50 m area (Shokirov 2021). More scans per 

site in a traditional grid-sampling design would likely improve the TLS performance and the reasons 

for these are discussed in the next section. Low and medium ground vegetation cover had less influence 

on completeness and correctness accuracy across all types of sensor data. 

The total volume of CWD tended to be overestimated by all the sensors. This may have been a result 

of the interpolation techniques when creating raster imagery. When considering both true and false 

positives, only ULS data indicated significant prediction power of CWD volume. TLS sensor data 

resulted in a particularly high overestimation of site-level CWD volume, due to the high sensitivity of 

TLS to other ground-based objects. High ground cover sites in the study area contained dense, clumped 

vegetation species such as Joycea pallida, Austrodanthonia spp., and Aristida ramose (McIntyre et al., 

2010) (Fig. 2). These types of grasses tend to create two problems for CWD detection: 1) they block 

the TLS laser pulses (occlusion error), which limits detection of CWD from distances over 10 m, and 

2) the algorithm can have difficulty distinguishing CWD from the clumped vegetation, and 

consequently creates many false positives. Although fusing TLS with ULS may help overcome the 

first problem, the latter problem influenced the Fusion dataset as it still contains TLS data, which 

created false positives when the landscape is covered by substantially dense and tall grass. A discussion 

on how to address these issues are provided in the next section. 

Similar to ground vegetation density, different vegetation cover types had variable impact on CWD 

classification accuracy. High tree and high shrub cover (HTHS) substantially decreased correctness 

accuracy in TLS and Fusion datasets by creating many false positives. This is probably due to detailed 

TLS data on low-lying vegetation clumps being misclassified, which contributed to false positives. 

Fusion data from sites with low tree and low shrub (LTLS) cover resulted in the most accurate CWD 

counts. 
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Considerations for sensor types, data collection and processing in relation to 

landscape context 

We found a moderate relationship between TLS and ULS derived variables, but most of the TLS and 

Fusion based variables were strongly correlated. High correlation between the TLS and Fusion 

variables is likely due to the TLS being over-represented in Fusion data as TLS has higher point 

density, which enables it to capture more details of surface topography. As a result, the TLS data had 

a stronger impact on the Fusion derived DSM, which consequently produced highly correlated TLS 

and Fusion surface topographic variables. Conversely, ULS data is under-represented in Fusion data 

and therefore the relationship between the ULS and Fusion variables is weaker (Appendix 1). Future 

research should consider balancing the contribution of the point clouds from each sensor when fusing 

TLS and ULS data. The ability of the ULS sensor to collect multiple returns from above the sites 

allowed it to detect the ground more accurately, and as a result, it typically generated the best DSMs 

(Appendix 4). Conversely, the single return TLS beams did not always reach the ground as accurately 

as ULS data due to occlusion from dense ground vegetation and the viewing angle.  

This study reported that seven TLS scans in each site could detect the majority of CWD on sites with 

lower or moderate ground cover; however, detection accuracy substantially decreased with increased 

ground cover. Based on these 7 scan, TLS data did not always capture CWD completely from all sides 

and experienced some occlusions due to the bigger incident angle (angle between the incoming laser 

pulse and surface normal) that may have prevented TLS from capturing CWD due to tall/dense 

vegetation blocking the laser pulse (Soudarissanane et al., 2009). Additional scans per site would 

improve TLS data coverage but would also require considerably more time for data collection and 

post-processing. Nonetheless, collecting more TLS scans per site may be necessary for sites that have 

high ground cover and/or increased surface variability (e.g. tall grasses or other ground objects, and/or 

higher topographic relief). This would decrease the incident angle of TLS scans, which would improve 

the accuracy of topography such as surface roughness and slope (Soudarissanane et al., 2009). 

Depending on the application, highly accurate surface roughness can be achieved when incident angle 

is < 50⁰, which can significantly decrease the occlusion error (Milenković et al., 2015). In addition,  

multiple return TLS sensors would be more capable of detecting CWD through dense ground cover 

than the single return sensor that we used.  

The ULS had a smaller incident angle and considering that the study area is an open woodland, this 

would have given the ULS an advantage for capturing CWD in more detail under the sparse canopy. 

The ULS sensor that we used also records up to 5 returns per laser beam, which likely factored into 
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performance differences between the sensors as well. The capabilities of ULS for detecting CWD 

could be further enhanced by increasing the point density per unit area. ULS sensors are now available 

with increased data acquisition flexibility and spatial resolution that can capture point density up to 

2000 points per m2, which can substantially improve the accuracy of surface topography (Levick et 

al., 2021). These types of sensors may be needed over more densely forested sites, where we would 

expect the ULS sensor to decrease in its detection accuracy due to the occlusion of the ground layer 

by canopy vegetation cover. The fusion of ULS and TLS data may be particularly useful in denser 

forests with canopy gaps where data collection from both sensors could reduce any loss of coverage. 

Ultimately, however, the contribution of ULS for CWD assessment would be limited by its ability to 

penetrate canopy vegetation. In forests with very dense canopies, it may not be possible to use ULS 

data for this purpose.  

This study analyzed the XYZ coordinates of point clouds only. LiDAR provides intensity values for 

each collected point that could provide additional strong prediction power, which in turn may improve 

RF classification accuracy as grass and CWD might reflect significantly different intensity value 

(Charaniya et al., 2004). However, intensity data requires additional radiometric calibration (Yan et 

al., 2012) and validation tasks. Future research should consider incorporating information on the 

intensity of LiDAR returns as this can be useful for the classification of some land cover types and 

may improve the detection and quantification of CWD with LiDAR data (Yan et al., 2012, Kashani et 

al., 2015). In addition, future research should also trial edge-preserved smoothing interpolation 

techniques (Al-nasrawi et al., 2017) to create DSMs, rather than TIN raster. Edge-preserving 

interpolation methods may decrease the surface roughness created by grasses while retaining the strong 

edges of CWD, and this could help mitigate errors created by false positive CWD objects from the RF 

model. 
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Abstract 

Remotely sensed measures of landscape and vegetation structure can help explain patterns in the 

occurrence and diversity of a number of different animal taxa, which can help guide management and 

conservation efforts. The majority of previous studies in this area have focused on birds and mammals; 

however, landscape-use by many reptiles and amphibians is also highly sensitive to vegetation 

structure. Most remote sensing studies also utilize airborne or satellite data that provides relatively 

rapid coverage of wide areas but may not have the resolution or viewing angle necessary to measure 

terrestrial features at scales that are meaningful for herpetofauna. For the first time, we collected 

LiDAR data from terrestrial laser scanning (TLS) and unmanned aerial vehicle laser scanning (ULS) 

to investigate relationships between vegetation structure and reptile and amphibian abundance, species 

richness and diversity in a woodland landscape. We identified relationships between the abundance 

and diversity of herpetofauna and a number of LiDAR derived vegetation metrics including canopy 

height, skewedness, vertical complexity, volume of vegetation and coarse woody debris (CWD). These 

relationships varied across species, groups and sensors. For example, overall reptile abundance showed 

a strong relationship to CWD, while amphibian abundance did not, and the relationship between CWD 

and reptile abundance was significant for ULS and ULS-TLS fused data (P < 0.05), but not TLS data 

alone. This reflects differences in the ability of TLS and ULS sensors to measure specific vegetation 

structural attributes. Overall abundance was explained slightly better by ULS data (R2 = 0.315) than 

TLS and Fusion data (R2 = 0.195, R2 = 0.180, respectively), and ULS data tended to perform similarly 

or better than TLS data for most, but not all models. The explained variance for some individual 

species, such as the three-toed skink (Chalcides striatus), was relatively high R2 = 0.318. In open 

woodland landscapes, ULS data has a number of benefits over TLS data for modelling relationships 

between herpetofauna and vegetation structure across wide areas. However, for some species, only 

TLS data identified significant predictor variables among the LiDAR-derived structural metrics. There 

were not enough individual species to determine whether this pattern related to a specific type of 

landscape use, but future research should investigate if and when TLS data may be more effective at 

identifying animal-habitat associations in woodland species. The data collected for this study was 

averaged over one hectare sites, but some herpetofauna primarily use landscapes at finer scales. Future 

research should also investigate how the scale at which LiDAR metrics are measured impacts their 

relationships to these animals.  
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Introduction 

Reptiles and amphibians contribute essential ecosystem services including nutrient cycling, seed 

dispersal, pollination and biological pest control (Cortes et al., 2014). They serve as predators, prey 

and symbionts across multiple trophic levels, and influence the distribution and abundance of 

numerous plant and animal taxa (Halliday, 2008, Howland et al., 2014, Evans et al., 2019). Although 

rarely considered ecosystem engineers, the physical impact of amphibians and reptiles on aquatic and 

terrestrial environments through nesting and burrowing activities can affect nutrient cycling and seed 

germination so substantially that their absence can cause a partial or total collapse of an ecosystem 

(Doody et al., 2020). Reptiles can also help reduce the transmission of some zoonotic diseases such as 

Lyme disease (Ginsberg et al., 2021). Conversely, invasive reptile and amphibian species that have 

been intentionally or unintentionally introduced to new environments can cause catastrophic damage, 

resulting in native fauna extinction, alterations of whole ecosystems, substantial human health risks 

and economic losses (Shanmuganathan et al., 2010, Kraus, 2015). For these reasons, understanding 

the factors that influence the distribution and abundance of herpetofauna is a useful endeavor.  

Modern day reptiles and amphibians tend to be relatively small in size compared to other animals and 

typically do not travel long distances, thereby impacting the scale at which they use landscapes for 

foraging, nesting, reproduction, hibernation, and shelter (McElhinny et al., 2006, Sillero and 

Gonçalves-Seco, 2014). As a result, habitat assessments for these animals often focus on relatively 

small spatial scales. At these scales, vegetation cover and coarse woody debris (CWD) are known to 

influence reptile and amphibian abundance, species richness and diversity (Michael et al., 2008, Owens 

et al., 2008, Sillero and Gonçalves-Seco, 2014, Howland et al., 2014, Mizsei et al., 2020). For example, 

recent studies identified strong relationships between vegetation structure, such as biomass and ground 

cover height, and the presence and abundance of reptiles (Howland et al., 2014, Mizsei et al., 2020). 

The importance of CWD as an essential habitat element for small animals, including herpetofauna, 

also has been demonstrated in a number of studies (Owens et al., 2008, Evans et al., 2019).  

In these studies, vegetation structure and coarse woody debris were measured using traditional field 

based methods which can be time consuming and labor intensive and may rely on extrapolating 

measurements from a subset of the study areas to the larger environment, which introduces potential 

error and bias (Hinsley et al., 2009). Remote sensing provides a potentially cost-effective alternative 

that can capture more complete structural and/or spectral detail at fine scale across wide areas (Marc 

L. Imhoff, 1997, Leyequien et al., 2007, Sillero and Gonçalves-Seco, 2014). Many previous studies 

utilizing remote sensing methods for wildlife habitat assessments have relied on multispectral imagery 
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from satellite or airborne platforms, which provide useful information on landscape composition 

(Leyequien et al., 2007), however their ability to capture structural data is limited (Lefsky et al., 2002, 

Eldegard et al., 2014). Light Detection and Ranging (LiDAR) technologies provides accurate 

information on landscape structure in three dimensions, and this technology has made important 

contributions to habitat mapping for many species that depend on structural aspects of the landscape 

and/or vegetation (Lesak et al., 2011, Eldegard et al., 2014).  

LiDAR sensors measure the time it takes for a laser light emitted from a sensor to hit an object and be 

reflected back. The distance between the sensor and objects is calculated by multiplying the measured 

time and speed of light and dividing by two (Newnham et al., 2015). Three-dimensional information 

on earth features can be collected with LiDAR from spaceborne, airborne and terrestrial platforms 

(Hillman et al., 2021). LiDAR has increasingly been used for forest inventories in the last two decades 

(White et al., 2016), and is also becoming an important tool to assess animal-habitat associations 

(Bradbury et al., 2005, Vierling et al., 2008, Davies and Asner, 2014).  

Most research utilizing LiDAR to investigate relationships between landscape structure and animals 

has focused on birds and mammals (Davies and Asner, 2014). Relatively few studies have focused on 

herpetofauna (but for exceptions see; (Sillero and Gonçalves-Seco, 2014, Fill et al., 2015, bin Abdul 

Rahman, 2018). Sillero and Gonçalves-Seco (2014) used LiDAR point clouds to estimate landscape 

surface heterogeneity to understand microhabitat features of four lizard species. Fill et al. (2015) found 

a strong positive relationship between LiDAR derived ground vegetation cover and the occurrence of 

eastern diamondback rattlesnakes (Crotalus adamanteus). LiDAR data has also been used to identify 

potential nesting sites for flatback sea turtles (Natator depressus) (bin Abdul Rahman, 2018). Notably, 

all these studies employed airborne LiDAR to evaluate animal-habitat associations.  

Airborne LiDAR is able to capture relatively rapid structural information on the mid and upper layers 

of vegetation; however, ground layer structural attributes can be occluded by the over-story vegetation 

(Cody, 1981b, Jupp and Lovell, 2007). The importance of ground layer complexity for reptile and 

amphibian abundance and species richness has been reported in a number of studies (Price et al., 2010, 

Cortes et al., 2014). Due to their lower viewing angles and typically higher resolution, terrestrial (TLS) 

and UAV-based (ULS) LiDAR can often see structural elements that are not visible to LiDAR sensors 

on high-flying airplane platforms (Loudermilk et al., 2009) and may be particularly useful for 

identifying low-lying vegetation structure. For the first time, we use LiDAR from TLS, ULS and the 

combined data from both platforms to examine the relationship between vegetation structure and 

woodland reptile and amphibian diversity and abundance. We expect that the ability of these sensors 
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to collect high details of the vegetation structure especially on the ground layer can identify important 

habitat structures of herpetofauna. Specific aims of this research were:  

1) to utilize TLS, ULS and fusion of both dataset to determine vegetation structural metrics that are 

important for explaining the abundance and diversity of reptiles and amphibians in a restored box-gum 

grassy woodland ecosystem, 

2) to evaluate the performance of three types of TLS, ULS and combination of both datasets for 

modelling reptile and amphibian habitat associations. 

Methods 

Study area 

This study was conducted at Mulligan’s Flat-Goorooyarroo Woodland Experiment (MFGOWE) in 

Canberra, Australia (35°09' S - 149°09' E, elevation 650–700 m, Fig. 1). MFGOWE consists of two 

joined reserves; Mulligans Flat Nature Reserve (MF) (683 ha) and Goorooyarroo Nature Reserve (GO) 

(702 ha), which were established in 1994 and 2006 respectively to protect and restore a critically 

endangered box-gum grassy woodland ecosystem (McIntyre et al., 2010). The landscape is dominated 

by Blakely’s Red Gum (Eucalyptus blakelyi) and Yellow Box (E. melliodora), also common are 

Scribbly Gum (E. rossi), Red Stringybark (E. macrorhyncha) and Brittle Gum (E. manniferia) 

(McIntyre et al., 2010, Shorthouse et al., 2012). The grassy understory is most commonly comprised 

of Joycea pallida, Austrodanthonia spp., Themeda australis and Aristida ramose (McIntyre et al., 

2010). The soils in the study area originated from ancient Silurian volcanoes that form the ridges and 

Silurian sedimentary rocks. Topography consists of low hills, undulating plains and flats (McIntyre et 

al., 2010). The average annual temperatures range from a minimum of 6.5 ̊ C to a maximum of 19.7˚C, 

and average annual rainfall is 615.9 mm (McIntyre et al., 2010, Manning et al., 2011).  

Mulligan’s Flat and Goorooyarroo were once leasehold grazing land with areas of historical cropping 

and pasture improvement, before becoming nature reserves. A number of restoration activities have 

been undertaken since the establishment of the sanctuaries to restore and protect the native 

biodiversity, including but not limited to, fencing the reserves to exclude feral grazers and predators, 

reintroducing coarse woody debris that had been previously cleared by agricultural activities, and the 

reintroduction of some native mammal and bird species (Manning et al., 2011, Shorthouse et al., 2012, 

Manning et al., 2013). Ninety-six 1 ha sites were established across the reserve as part of the restoration 

and on-going monitoring activities (Manning et al., 2011). The 1 ha sites are distributed across four 
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types of vegetation structure: 1) high tree, high shrub cover, 2) high tree, low shrub cover, 3) low tree, 

low shrub cover, and 4) low tree, high shrub cover.  

 

Figure 6. Map of study area. 1) Australia, 2) Australian Capital Territory, 3) Mulligan’s Flat-

Goorooyarroo  

Animal survey data 

At each of the 96 1 ha sites, reptile and amphibian surveys have been conducted yearly in March/April 

since 2008 (Manning et al., 2011, Evans et al., 2019). This time of year was chosen to detect adults 

and young from the preceding spring and summer (southern hemisphere). During each survey, every 

1 ha site is searched twice by two experienced observers for 30 minutes on two different days (Evans 

et al., 2019). Observers visually look for reptiles and amphibians within and on top of substrates such 

as logs, rocks and bark, and also scanned logs for basking reptiles with binoculars. When observed, 

reptile and amphibian species, location and substrate are recorded (Manning et al., 2011, Evans et al., 

2019). For this study, we used reptile and amphibian survey data collected from 2014 to 2019 because 

it was unlikely that vegetation structure or CWD had changed substantially during this time-period 

and multiple years of animal data were needed to achieve the statistical power necessary to identify 

relationships between population data and vegetation structural metrics.  

1) 

2) 

3) 



105 
 

TLS data collection and post - processing 

We used Topcon GLS2000 equipment (Topcon, Japan) for TLS data collection over 96 sites between 

1 and 31 October 2018. The Topcon GLS2000 is a laser scanner that emits near-infrared (1064 nm) 

laser pulses at up to 120,000 laser pulses per second. The field of view of the scanner is 360° and 270° 

in the horizontal and vertical direction respectfully. The beam diameter of the single pulse is 4 mm at 

60 m. TLS data was collected at a scanner height of approximately 1.7 m and with a 6 mm at 10 m 

scanning resolution. Seven scan stations in a zigzag formation were used in the 1 ha (200 m by 50 m) 

sites, with each station distanced approximately 30m apart. Co-registration was performed after all the 

scans were collected. The position of each scan was measured with a Deferential GPS (Trimble 

Geoexplorer 6000 series) and post-processing was performed using local base station data to improve 

the location accuracy.  

Point clouds from seven individual scan stations were co-registered using Multi-station Adjustment 

(MSA) plugins in RiScan Pro software (RIEGL Laser Measurement Systems GmbH). MSA plugins 

automatically search planar surfaces in the point clouds and align common points on overlapping 

planes from different stations. TLS data from each site was georeferenced using DGPS locations of 

each scan position and clipped to the spatial extent of each of the 96 polygon sites. Point clouds were 

subsampled into 10 mm spacing to homogenize the point distributions using Cloud Compare 

(CloudCompare 2.10.2) (Fig. 2).  

ULS data collection and post-processing 

The ULS platform consisted of a quadrocopter integrated with a RIEGL miniVUX-1UAV LiDAR 

sensor (RIEGL, Austria) and an APX INS/GNSS systems. ULS data with a 100 kHz pulse repetition 

rate and up to 100,000 measurements/second was collected across the study area from the 7th-14th of 

November, 2018 under fine weather conditions. The flight was performed at approximately 80 m 

above the take off point with a speed of approximately 25.2 km and up to 5 returns per pulse. DJI 

ground station pro V2 was utilized to plan the flight missions (SZ DJI TECHNOLOGY CO., 2018). 

The ULS sensor failed to collect data over two sites due a system error. These two sites were 

subsequently excluded from further analysis with ULS and TLS data. Sites were clipped by 

corresponding polygons to create separate point clouds for each site (Fig. 2).  

Merging TLS and ULS point clouds 

TLS and ULS LiDAR point clouds of each site were co-registered using the Iterative Closest Point 

(ICP) algorithm in CloudCompare (CloudCompare 2.10.2) (Fig. 2). Point clouds captured by TLS and 
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ULS sensors for each site were first manually adjusted and then, ICP algorithm was run to perform 

automatic co-registration. In ICP algorithm, the random sample limit was set to 250,000 points and 

RMS error difference threshold set to 1 × 10−08, following (Levick et al., 2021). Fused point clouds 

were subsampled into 0.01 m point spacing to make evenly distributed point clouds across the site. 

  

Figure 7. Normalized point cloud of site GO72A-3 colored by height. The top image is from the 

terrestrial laser scanner (TLS), UAV laser scanner (ULS) data is in middle, and the combination of 

both datasets (Fusion) is at the bottom. 

Vegetation height model 

Point clouds were filtered for noise and classified into ground and non-ground points using LAStools 

(Isenburg, 2012). Vegetation height models (VHM) were then created by calculating height of each 

above ground point relative to the ground points with LAStools (Isenburg, 2012) (Fig. 2). The 

vegetation height model represents absolute height of vegetation above the ground and is used to 

calculate the vegetation structural variables, which will be introduced in the following sections.  

Extracting coarse woody debris 

We developed a new method to identify and quantify coarse woody debris (CWD) from TLS, ULS 

and Fusion datasets (Shokirov et al. Chapter 3, in preparation). First, we generated a digital height 

model (DHM) from point clouds up to 1.3 m and calculated several topographic surface variables 

including roughness, topographic position index (TPI), slope and aspect. Training datasets for use with 
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Random Forest (RF) models were prepared by delineating CWD, shrub and grass classes on the DHM 

and its shaded relief. Random forest (RF) is an ensemble classifier that creates Classification and 

Regression Tree (CART) on training data samples where each Tree generates a voting based rule to 

predict a target class. The RF classification algorithm classified CWD, shrub and grass classes with 

accuracies over 70%. Image smoothing algorithms were run to remove noise in the classification map. 

Finally, CWD candidate pixels were exported as a polygon shapefile and elongated objects were 

extracted as CWD using GIS analysis. Additional details of this research and classification accuracies 

are provided in Chapter 3. 

Calculating vegetation structural variables from LiDAR datasets 

A number of vegetation variables were calculated from different strata of the landscape to extract as 

much information as possible on the vegetation structure of each site. First, canopy metrics were 

computed from points above 1.3 m from the ground (Table 1). Then, point clouds were stratified into 

three different layers, including the ground layer (≤1m), the mid-story (> 1m, ≤ 10m) and the upper 

story (> 10m) based on existing vegetation layer descriptions for eucalypt grassy woodlands 

(Department of Environment, 2013). For each vegetation layer, additional vegetation metrics were 

calculated (Table 1). Total vegetation volume was estimated by building 0.5 m voxels (volumetric 

pixels) from non-ground points, with each voxel made of one or more points. A total of 37 variables 

were calculated using the lidR package (Roussel, 2017). Descriptions of the 37 LiDAR –derived 

landscape variables, CWD volume and number are provided in Table 1. 

Table 10. Descriptions of calculated vegetation structural variables from LiDAR datasets 

Name of variable Description 

maxH Maximum height of canopy (points > 1.3m). Higher maximum values represent 

bigger trees. 

meanH Mean height of canopy (points > 1.3m). If the value is higher, it means there are 

bigger the trees in the site, if the value is lower, more shrubs and regeneration trees 

abundant in the site.  

stdH Standard deviation of canopy height (points > 1.3m). It describes the height 

variation in the canopy. 

skewH Skewness of canopy height. Negative skewness – the distribution dominated by 

higher points (upper canopy is dominant) but a few extreme lower points. Positive 

skewness - the distribution dominated by lower points (lower canopy is dominant) 

but a few extreme higher points, (points > 1.3m). 

kurH Kurtosis of canopy height. Negative kurtosis – the distribution 
centered on mean values (mid-canopy is dominant), without much 
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higher or lower canopy, positive kurtosis – the distribution heavy on 
tails, with more at the high and low ends and less in the center (lower 
and upper canopy is dominant), (points > 1.3m).  

p_05, p_10, p_25, p_50, 

p_75, p_90, p_95, p_99 

Canopy height percentiles. Canopy height percentile here was defined as the height 

below which a specified percentage of total point clouds were located, (points > 

1.3m). For example, p_05 = 2.0 m means that 5% of vegetation points found below 

2 m. Vegetation density is higher at p_05 = 2.0 m than p_05 = 3.0 m. 

vci_2m, vci_5m, 

vci_10m, vci_15m, 

vci_20m 

Vertical complexity indexes (VCI) at 2m, 5m, 10m, 15m, 20m height bins, (points 

> 1.3m). VCI was calculated by the following equation: 

𝑉𝑉𝑉𝑉𝑉𝑉 = (−� [(𝑝𝑝𝑖𝑖 ln(𝑝𝑝𝑖𝑖)]))/ln (𝐻𝐻𝐻𝐻)
𝐻𝐻𝐻𝐻

𝑖𝑖=1
 

Where VCI in a vertical complexity index, HB is the total number of height bins, 

and pi is the proportional abundance of LiDAR returns in height bin i.   

A VCI value close to one indicates that most height bins have equal amount of 

vegetation. VCI value decreases if the distribution of canopy in the height bin 

becomes more uneven (van Ewijk et al., 2011). 

cov Fraction of cover, (points > 1.3m).  

height_cv Coefficient of variation of height, (points > 1.3m). Indicates the canopy height 

variation. 

canopy_roughness Canopy roughness describes complexity/variability of canopy height (Herrero-

Huerta et al., 2020) (points > 1.3 m). Higher variability in the canopy height 

provides higher roughness index and vice versa. 

canopy_shannon Normalized Shannon diversity index of canopy (Pretzsch, 2009), (points > 1.3m). 

Indicates canopy height diversity. 

tvolume Total vegetation volume (m3) – number of 0.5 m3 voxels divided by 8 (ground 

points excluded). 

vlayer_L1 Vegetation volume (m3) in 1st layer (points 0-1m¸ ground points excluded). 

vlayer_L2 Vegetation volume  (m3) in 2st layer (points  1m-10m). 

vlayer_L3 Vegetation volume (m3) in 3st layer (points 10m and above). 

meanH_L1, meanH_L2, 

meanH_L3  

Mean height of 1st, 2nd, 3rd layer. 

sdH_L1, sdH_L2, 

sdH_L3 

Standard deviation of vegetation height in 1st, 2nd, 3rd layer. 

roughness_L1, 

roughness_L2, 

roughness_L3 

Roughness indexes of 1st, 2nd, 3rd layer (Jenness, 2004). Horizontal distribution of 

vegetation across different layers. 

vci_L1, vci_L2, vci_L3 Vertical complexity indexes of 1st, 2nd, 3rd layer (van Ewijk et al., 2011). Vertical 

distribution of vegetation across different layers. 

cwd_volume CWD volume (Chapter 3) 

numberOfCWD Number of CWD (Chapter 3) 
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Statistical analyses 

Reptile and amphibian data 
From reptile and amphibian survey data, overall animal abundance (maximum number of individuals 

counted), species richness (cumulative total number of different species), and Shannon diversity index 

(describes both the number and the evenness of species in a dataset by accounting for the proportion 

of individuals that contribute to each species (Jari Oksanen, 2019)) were calculated for each site using 

an “FD” package (Laliberté and Legendre, 2010) in R (R Team, 2019) (Table 2). The overall species 

abundance data was divided into two separate groups: (1) reptile species and (2) amphibian species. 

The abundance value for each group was calculated by adding the number of individual animals 

observed within their respective group (i.e., reptile or amphibian). Individual species abundance was 

the sum of every individual from a species at a site.  

Selecting predictor variables 
Pearson correlation matrices were calculated for the TLS, ULS and Fusion datasets (Appendix 1, 2, 3) 

to analyze the collinearity between 37 variables. If a variable was highly correlated (0.7 maximum 

threshold) to another variable, the most ecologically meaningful variable with the least amount of 

collinearity conflicts with other variables was retained (Garden et al., 2007). Variables from ground, 

mid, and upper-story vegetation layers were included in the final selection as well. The same variables 

were selected across all three LiDAR datasets (TLS, ULS and Fusion). All the variables were 

standardized to ensure that the estimated coefficients were on the same scale, making it easier to 

compare effect sizes (Becker et al., 1988).  

Modelling overall reptile and amphibian abundance, species richness and 

diversity  

Linear mixed effects models with lmer function in the lme4 package (Bates et al., 2015) in R were 

used to estimate relationships between LiDAR derived landscape structural metrics and overall reptile 

and amphibian abundance, species richness and diversity. Linear mixed models are an extension of 

basic linear models, which allow fixed and random effects, and were used when the data had a grouped 

or nested structure (Melin et al., 2018). Random effects help account for structure within sampling. 

For example, due to the nested design of our study area, sites within a given cluster may be more 

structurally similar to one another than sites in different clusters. Therefore, we incorporated random 

effects (24 clusters by four vegetation classes) and fixed effects (in our case, site-level LiDAR derived 

variables used to predict a dependent animal population variable) in our models. The dependent 
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variables were overall site-level reptile and amphibian abundance, species richness and Shannon 

diversity. 

Modelling the abundance of reptiles only, amphibians only or individual 

species. 

The relationship between the abundance of reptiles or amphibians, as groups or individual species, and 

LiDAR vegetation structural characteristics were analyzed using GLMMs. The vegetation variables 

derived from TLS, ULS and Fusion were fixed effects and the 24 clusters were random effects that 

combined to make the independent variables. The abundance of each different reptile or amphibian 

species as well as reptile abundance overall and amphibian abundance overall were the dependent 

variables and were modelled separately. Unidentified skinks, defined as skinks that were observed but 

disappeared before observers could identify their species, were also included in the individual species 

modelling. Although unidentified skink category most likely does not represent an individual species, 

we left it in the individual species analysis to determine what vegetation structural variables were most 

associated with not being able to clearly identify a skink because this information may be useful for 

future survey design.  

Examination of model fit 

To examine model fit, dispersion, zero-inflation, and residual spatial and temporal autocorrelation 

issues, Residual Diagnostics from a HierARchical Models (DHARMa) package (Hartig, 2017) were 

used. For each model, marginal R2 (R2
mar) and conditional R2 (R2

con) were calculated to estimate the 

proportion of variance explained by fixed and mixed effects for reptile and amphibian communities 

and individual species (Nakagawa et al., 2013). Dependent variables had very few counts in some 

models, causing model convergence problems. To solve this issue, only species that had at least 10% 

count data across the sites were kept. Thus indicating that each species should have been observed at 

10 or more sites to be valid for modelling.  

Results 

Reptile and amphibian observations 

Observers encountered a total of 1585 individual reptiles and amphibians (571 in Mulligan’s Flat and 

1014 in Goorooyarroo nature reserves) from 25 species (13 lizard species, 7 frog species, 2 snake 

species and 1 turtle species) from dual surveys between 2014 and 2019 (Table 2). During this period, 
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sites had a maximum of fifty-three individuals across nine species and a minimum of one individual 

from one species (Table 3). Most of the sites had frogs and lizards, and a few sites had one species of 

snake or turtle (Table 4). 

Table 11. Reptile and amphibian species that were counted between 2014 and 2019 
№ Common name Scientific name Number of counts 

 Skinks   

1 Delicate Skink                                               Lampropholis delicate 454 

2 Boulenger's Skink Boulengeri 501 

3 Unidentified Skink              N/A 267 

4 Three-toed Skink                Chalcides striatus 102 

5 Shingleback                     Tiliqua rugose 37 

6 Common Dwarf Skink             Menetia greyii 21 

7 Bearded Dragon                  Pogona 1 

8 Jacky Dragon                   Amphibolurus muricatus 22 

9 Spotted-backed Skink           Niveoscincus ocellatus 1 

10 Olive Legless Lizard            Delma inornata 4 
11 Common Bluetongue               Tiliqua 2 

12 Garden Skink                    Lampropholis guichenoti 7 

13 Cunningham's Skink             Egernia cunninghami 3 

14 Copper-tailed Skink    Ctenotus taeniolatus 4 

 Snakes and turtles   

15 Dwyer's Snake                   Suta dwyeri 4 

16 Eastern Brown Snake            Pseudonaja textilis 7 

17 Eastern Long-necked Turtle      Chelodina longicollis 1 

 Frogs and toads   

18 Spotted Grass Frog              Limnodynastes tasmaniensis 75 

19 Common Froglet                  Crinia signifera 31 

20 Peron's Tree Frog               Litoria peronei 2 

21 Striped Marsh Frog              Limnodynastes peronei 1 

22 Verreaux's/Whistling Tree Frog Litoria verreauxii 3 

23 Plains Froglet                  Crinia parinsignifera 12 

24 Smooth Toadlet                  Uperoleia laevigata 21 

25 Unidentified Frog/Toad          N/A 2 
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Table 12. Summary statistics for reptile and amphibian data collected from 94 sites. Abundance is total 

number of reptiles and amphibians, SR is species richness, and SD is Shannon diversity. 

Statistics Abundance SR SD 
Maximum 53.0 9.0 2.0 
Mean 14.3 4.6 1.2 
Standard deviation 8.6 1.6 0.4 
Median 13.5 5.0 1.3 
Minimum 1.0 1.0 0.0 
Sum 1585.0 27.0 NA 

 

Table 13. Reptile and amphibian abundance and species richness (SR) by groups (frog and toads, 

lizards, snakes, and turtles) across 94 sites. 

Statistics Frog and Toads Lizards Snakes Turtles 

Abundance SR Abundance SR Abundance SR Abundance SR 
Maximum 43.0 5.0 41.0 7.0 1.0 1.0 1.0 1.0 
Mean 3.9 1.5 15.2 3.8 1.0 1.0 1.0 1.0 
Stdev 7.1 0.9 9.0 1.3 0.0 0.0 NA NA 
Median 2.0 1.0 14.0 4.0 1.0 1.0 1.0 1.0 
Minimum 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

Selected predictor variables 

Eleven of thirty-seven variables were selected for modelling based on the variable selection methods 

described in section 1.10 (Fig. 3). TLS and Fusion data derived variables were typically more similar 

in values than the ULS data as illustrated in the violin plots from Figure 3. ULS data had lower values 

for vegetation volume and metrics derived from under the canopy (Fig. 3).  
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Figure 8. Violin plots illustrate the distribution of LiDAR metric values across the 11 independent 

variables. Boxes in the violins show median (middle line), first (bottom line) and third (top line) 

quartiles. 

 

Modelling overall reptile and amphibian abundance, species richness and 

diversity  

The lmer models showed some predictive power for overall reptile and amphibian abundance (R2
mar 

= 19.5% (TLS), R2
mar  = 31.5% (ULS), R2

mar  = 18.0% (Fusion)) (Table 5). Reptile and amphibian 

abundance was positively correlated to average height of vegetation (meanH, p < 0.01), canopy height 

skewness (skewH, p < 0.01) and CWD volume (p < 0.001), and negatively correlated to second layer 

vegetation volume (vlayer_L2, p < 0.01), average height of first layer (meanH_L1, p < 0.01) and 

vegetation complexity of third layer (vci_L3, p < 0.05). Overall species richness was not significantly 

correlated to any of the LiDAR variables. Species diversity was positively associated with TLS and 

ULS derived height metrics (meanH, p < 0.05) and TLS derived canopy height skewness (skewH, p < 

0.05), and negatively correlated to TLS and ULS based third layer vegetation complexity (vci_L3, p < 

0.05). The explained variance for species richness and species diversity were relatively low (R2
mar  ≈ 

10%) (Table 5). 

Table 14. Model summary of the relationship between LiDAR derived vegetation structural metrics 

(independent variables) and overall reptile and amphibian abundance, species richness and diversity 

(dependent variables). Abundance is reptile and amphibian abundance, SR is species richness, SD is 
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Shannon diversity. First and second rows of independent variables show intercept and standard error 

of the model. Intercept of significant variables are highlighted in bold. 
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  Dependent variables 
  Abundance SR SD 
  TLS ULS Fusion TLS ULS Fusion TLS ULS Fusion 
           
meanH 0.433** 0.411* -0.170 0.452 1.690 0.588 0.591** 0.474* 0.200 
  (0.165) (0.170) (0.112) (0.267) (0.929) (0.633) (0.228) (0.211) (0.143) 
  

         

skewH 0.417** 0.266** -0.080 0.362 0.868 0.678 0.437** 0.201 0.183 
  (0.128) (0.085) (0.106) (0.189) (0.496) (0.508) (0.162) (0.113) (0.114) 
  

         

vci_5m -0.046 -0.090* 0.007 -0.052 -0.201 -0.368 -0.066 -0.039 -0.083 
  (0.044) (0.044) (0.050) (0.070) (0.249) (0.270) (0.060) (0.057) (0.061) 
  

         

canopy_roughness -0.014 -0.041 0.052 -0.003 -0.003 0.015 -0.044 -0.017 -0.028 
  (0.065) (0.057) (0.072) (0.079) (0.256) (0.284) (0.065) (0.058) (0.063) 
  

         

vlayer_L1 0.089 0.172 -0.078 0.102 0.415 0.126 0.118 0.164 0.080 
  (0.065) (0.094) (0.059) (0.088) (0.381) (0.303) (0.072) (0.086) (0.068) 
  

         

vlayer_L2 
-

0.216*** 
-

0.270*** 
-0.115 -0.073 -0.560 -0.242 -0.026 -0.125 -0.029 

  (0.063) (0.081) (0.067) (0.075) (0.321) (0.283) (0.061) (0.072) (0.063) 
  

         

meanH_L1 -0.142** -0.034 -0.125** 0.121 0.100 -0.034 0.096 -0.002 -0.021 
  (0.053) (0.055) (0.046) (0.074) (0.277) (0.223) (0.062) (0.063) (0.050) 
  

         

vci_L2 0.153 0.153* -0.067 0.142 0.361 0.421 0.144 0.069 0.071 
  (0.079) (0.062) (0.083) (0.106) (0.309) (0.363) (0.089) (0.070) (0.081) 
  

         

vci_L3 -0.294 -0.342* -0.200* -0.319 -1.264 -0.117 -0.422* -0.387* -0.073 
  (0.156) (0.168) (0.101) (0.237) (0.837) (0.530) (0.200) (0.190) (0.119) 
  

         

height_cv -0.097 0.025 -0.185** 0.068 0.414 -0.052 0.119 0.195 -0.003 
  (0.085) (0.115) (0.065) (0.136) (0.551) (0.372) (0.113) (0.125) (0.083) 
  

         

cwd_volume 0.048 0.139** 0.199*** -0.079 0.036 0.030 -0.064 -0.072 -0.015 
  (0.046) (0.053) (0.051) (0.072) (0.304) (0.298) (0.058) (0.069) (0.067) 

    
         

  Intercept 2.738*** 2.740*** 2.739*** 1.557*** 4.787*** 4.787*** 1.261*** 1.261*** 1.261*** 
    (0.080) (0.075) (0.092) (0.048) (0.172) (0.181) (0.039) (0.039) (0.039) 
    

         

  Marginal (R2mar) 0.195 0.315 0.180 0.080 0.123 0.082 0.120 0.118 0.089 
  Conditional (R2con) 0.196 0.317 0.181 0.087 0.128 0.105 0.120 0.118 0.089 

Note: *p < 0.05, **p < 0.01, ***p < 0.001 

Mixed effects models showed that reptile only abundance had a negative relationship to 

Canopy_roughness (p < 0.05), vlayer_L2 (p < 0.01) and height_cv (p < 0.05), and a positive 

relationship to skewH (p < 0.05) and cwd_volume (p < 0.01). Amphibian abundance tended to increase 

with higher meanH (p < 0.001), skewH (p < 0.001) and canopy_roughness (p < 0.001), captured by 

different types of data. On the contrary, amphibian abundance decreased with increasing volume of 

layer 2 and vertical complexity of layer 3 (vlayer_L2 = p < 0.01, and vci_L3 = p < 0.001) (Table 6). 
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Table 15. Mixed effects model summary of the relationship between LiDAR derived vegetation 

structure and reptile abundance (lizards, snakes and turtles) and amphibian (frogs and toads) 

abundance. First and second rows of independent variables show intercept and standard error of the 

model. Intercept of significant variables is highlighted in bold. 
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  Dependent variables 
  Reptile Amphibian 
  TLS ULS Fusion TLS ULS Fusion 
       
meanH 0.256 0.162 -0.134 4.333*** 3.463*** 0.155 
  (0.172) (0.178) (0.118) (0.909) (0.852) (0.458) 

 
      

skewH 0.334* 0.136 -0.027 3.063*** 2.022*** 0.217 
  (0.134) (0.090) (0.111) (0.693) (0.486) (0.442) 

 
      

vci_5m -0.057 -0.084 -0.012 0.464 -0.313 0.268 
  (0.046) (0.044) (0.052) (0.252) (0.280) (0.215) 

 
      

canopy_roughness -0.188* -0.209** -0.147 1.083*** 0.389 1.017*** 
  (0.074) (0.064) (0.081) (0.300) (0.202) (0.234) 

 
      

vlayer_L1 0.064 0.051 -0.121 0.952** 0.81 0.419 
  (0.069) (0.101) (0.062) (0.296) (0.458) (0.245) 

 
      

vlayer_L2 -0.149* -0.125 -0.037 -0.714* -0.414 -0.671* 
  (0.069) (0.090) (0.073) (0.284) (0.327) (0.294) 

 
      

meanH_L1 0.170** -0.018 -0.052 0.453 -0.239 -0.637*** 
  (0.055) (0.058) (0.049) (0.242) (0.254) (0.186) 

 
      

vci_L2 0.204* 0.130* 0.033 -0.146 -0.793* -0.792* 
  (0.083) (0.064) (0.088) (0.391) (0.313) (0.358) 

 
      

vci_L3 -0.122 -0.045 0.176 -4.067*** -3.696*** -0.314 
  (0.161) (0.174) (0.107) (0.895) (0.834) (0.399) 

 
      

height_cv -0.155 -0.090 -0.161* 0.709 1.392** -0.389 
  (0.089) (0.120) (0.069) (0.409) (0.524) (0.236) 

 
      

cwd_volume 0.044 0.151** 0.175*** -0.447 0.202 0.186 
  (0.049) (0.056) (0.053) (0.237) (0.233) (0.250) 

   
      

  Intercept 2.620*** 2.628*** 2.622*** -0.936 -0.687 -0.618 
    (0.085) (0.082) (0.101) (0.498) (0.405) (0.376) 
   

      

  Marginal (R2mar) 0.213 0.221 0.169 0.266 0.280 0.277 
  Conditional (R2con) 0.214 0.223 0.170 0.272 0.290 0.289 

Note: *p < 0.05, **p < 0.01, ***p < 0.001 

Individual reptile and amphibian species abundance 

Of the 27 species, eight species were observed in at least 10 sites. The abundance of these eight species 

and “unidentified skinks” were modelled using LiDAR structural variables. The individual species 

included the Boulengers Skink (Morethia boulengeri), Common Dwarf Skink (Menetia greyii), 

Delicate Skink (Lampropholis delicata), Jacky Dragon (Agamidae), Shingleback (Tiliqua rugosa), 

https://www.google.com/search?rlz=1C1GCEU_enAU842AU842&sxsrf=ALeKk00x2IIIP4aX282-yDQGTmHnrW7WdQ:1609141116004&q=Agamidae&stick=H4sIAAAAAAAAAONgVuLUz9U3MCwrNCtZxMrhmJ6Ym5mSmAoAEiKlihgAAAA&sa=X&ved=2ahUKEwithfPklfDtAhX8xzgGHVQWCVIQmxMoATAWegQIFxAD
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Smooth Toadlet (Uperoleia laevigata), Spotted Grass Frog (Limnodynastes tasmaniensis), Three-toed 

Skink (Saiphos equalis) (Appendix 4). Only the Jacky Dragon did not demonstrate statistically 

significant relationship to any of the LiDAR derived structural metrics. The abundance of the 

remaining species and the “unidentified skink” group showed a significant response to one or more 

variables; however, these were not always consistent across sensors (Appendix 4). The predictive 

power of the models in explaining individual species abundance ranged from R2
mar

 = 0.035 to R2
mar

 = 

0.318. 

Discussion 

In this chapter, the relationship between eleven vegetation structural variables derived from three types 

of LiDAR data (TLS, ULS and Fusion) and reptile and amphibian abundance, species richness and 

diversity were analyzed. TLS and Fusion dataset produced variables with similar values compared to 

the ULS dataset. This might be due to the over-representation of TLS data in Fusion dataset as TLS 

point cloud has much higher point density than the ULS data. As a consequence, TLS data had heavier 

impact on the derived structural metrics compared that of the ULS data. Our models demonstrated that 

woodland reptile and amphibian populations were significantly associated with a number of vegetation 

structural characteristics from the selected variables, the most common of which were mean canopy 

height, canopy skewedness, vertical complexity, volume of vegetation and CWD. Notably these 

relationships were not consistent across sensors, taxa groupings or species.  

ULS models typically explained as much if not more variance in dependent variables as TLS data with 

a few exceptions. The variance in the overall abundance of reptiles and amphibians showed a stronger 

relationship to LiDAR derived vegetation structural variables than species richness and Shannon 

diversity, although this could be a function of relatively low overall diversity at any given site 

(maximum of 9 species). Most individual species showed a significant relationship with one or more 

structural variables, although model performance varied widely between species, but less so between 

LiDAR data types. We discuss some of the notable relationships between herpetofauna population data 

and vegetation structural metrics with reference to existing literature on habitat associations for these 

animals. We also discuss sensor performance and potential reasons why significant associations 

between LiDAR derived vegetation structural metrics and animal population data were not consistent 

across sensors.  
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Relationships between LiDAR derived structural metrics and the abundance 

and diversity of woodland herpetofauna 

Overall reptile and amphibian abundance was positively associated with TLS and ULS derived mean 

height and skewness of canopy height (TLS and ULS), and CWD volume (ULS and Fusion) and 

negatively associated with mean height of vegetation from 0-1 m (TLS and Fusion) and the volume of 

vegetation in the middle layer from 1 to 10 meters (TLS and ULS). This suggests that the animals 

included in this study typically preferred habitat with a higher average canopy height with a few tall 

crowns but no consistent tall canopy cover. Overall abundance was associated with less vegetation 

biomass between the canopy and ground layer and lower average vegetation height from 0-1 m. Overall 

abundance was also higher in landscapes with a higher volume of CWD and this was largely driven 

by reptile data since amphibian abundance alone was not significantly related to CWD.  

To our knowledge, only one previous study looked at LiDAR derived vegetation structural metrics and 

herpetofauna population data. A recent study (Fill et al., 2015) found a positive relationship between 

ALS LiDAR derived ground vegetation cover and the habitat selection of eastern diamondback 

rattlesnakes (Crotalus adamanteus). Contrary to their expectations, they did not find a relationship 

between LiDAR derived canopy metrics and snake occurrence, likely  due to a lack of heterogeneity 

across their study sites, which meant that most sites were the preferred open-canopy habitat (Fill et al., 

2015). Research using traditional field measures of vegetation structure have identified significant 

relationships between reptile abundance and vegetation cover, complexity and CWD (Jellinek et al., 

2004, Evans et al., 2019). Howland et al. (2014) investigated many of the same reptile species as our 

study and found greater abundance, species richness and diversity in woodlands than in grasslands. 

This is thought to be the results of additional shelter and foraging substrates provided by CWD and 

leaf litter from scattered trees and shrubs (Evans et al., 2019). Furthermore, canopy gaps, which are 

also common in woodland landscapes, provide sunlit areas for reptile basking and thermoregulation 

(Pike et al., 2011). The negative relationship between reptile abundance and canopy roughness (TLS 

and ULS) suggests that landscapes with less structural variability above 1.3 m are also preferred by 

reptiles, although that low variability could be cause by consistently open or consistently closed cover. 

Notably, this relationship was significantly positive (TLS and Fusion) for amphibians, which were 

more abundant in areas with higher canopy variability above 1.3 m.  

Numerous studies have found that frog abundance and species richness increase in areas with more 

tree canopy cover (Lemckert, 1999, Roznik et al., 2015). Amphibians (frogs and toads) in our study 

preferred greater average canopy height and shrub layer (TLS and ULS). Amphibian preference for 
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landscapes with a higher volume of vegetation from 0-1 m (TLS) may be explained by higher moisture 

levels in these areas, which supports greater vegetation density, since these animals must maintain 

moist skin and generally can not tolerate prolonged dry conditions (Demaynadier and Hunter, 1998). 

Different frog species use different landscape strata (e.g. ground vs arboreal) but too few individuals 

from most amphibian species were observed to robustly interrogate predictions derived from the 

habitat preference of specific frog genera.   

Individual species abundance models also yielded interesting associations that did not always align 

with the existing literature. For example, an earlier study based on traditional vegetation surveys found 

that the presence of Boulengers Skink (Morethia boulengeri) was positively associated with canopy 

cover, so preferred woodland landscapes, but was not related to grass structure (Fischer et al., 2004, 

Howland et al., 2014). Similarly, another study (Fischer et al., 2004) found that the same skink 

preferred high vegetation cover and specifically tree cover. Our study found that the abundance of 

Boulengers skink was associated with higher average height in the lower layer of vegetation (e.g., 

grasses) (TLS) as well as vertical complexity of mid layer vegetation from 1 to 10 m (TLS and ULS) 

and canopy skewedness (TLS and ULS), but negatively associated with vertical complexity at 5 m 

(ULS) (Appendix 4). A study from 2014 (Howland et al., 2014) found that the three toed skink 

(Saiphos equalis) was strongly associated with a metric of grass vegetation structure that correlated 

with biomass and height, whereas our models found a significant negative relationship to the volume 

of vegetation from 0-1 m (TLS and Fusion) and the abundance of three toed skinks, which was also 

negatively associated with vertical complexity at 5 m (Appendix 4).  

Performance of TLS, ULS and Fusion based models 

Generally, the models from the three types of data provided similar results. For overall bird abundance, 

explained variance by the fixed effects (R2
mar) from the ULS model was slightly higher than the TLS 

and Fusion models. All other models from different types of data demonstrated similar R2
mar. 

Difference between the explained variance by the fixed effects (R2
mar) and the random effects (R2

con) 

were negligible for all the models, which implies that the clusters of sites did not have significant 

influence on herpetofauna abundance and species richness.  

Some of the relationships between animal abundance and specific vegetation metrics derived from the 

different types of sensor data were unexpected. For example, overall abundance and the diversity of 

reptiles and amphibians combined was found to be strongly and significantly associated to both the 

TLS and ULS derived meanH. However, Fusion based meanH was not significantly related to any of 

these dependent variables (Tables 5, 6). The reason for this is unclear.  
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Associations between CWD volume and herpetofauna were also inconsistent across sensor types, but 

this is easier to explain. Overall reptile and amphibian abundance was positively associated to ULS 

and Fusion derived CWD but not TLS derived CWD. This is likely the result of differences in the 

ability of TLS and ULS sensors to detect and measure CWD. Shokirov et al (Chapter 3) found that 

CWD volume was measured more accurately by ULS and Fusion data than TLS data. Ground 

vegetation cover had strong negative impacts on CWD detection and the RF classification algorithm 

used to extract CWD had more difficulty differentiating CWD from dense vegetation cover (e.g. 

tussock grass) with TLS data than ULS and Fusion data.  

ULS models performed slightly better in identifying relationships between vegetation structure and 

the abundance and diversity of most herpetofauna; however, ground dwelling shinglebacks (Tiliqua 

rugosa) and three-toed-skinks (Saiphos equalis) were an exception. This may be related to the 

performance of the different sensors in characterizing vegetation metrics at specific heights above the 

ground that are associated with particular species (Davies and Asner, 2014). TLS typically captures 

more detailed information below the canopy than ULS sensors, which could be why the TLS models 

performed better for those two species. However, TLS data may have performed better for other 

species if we had increased the number of scans, and therefore the coverage of points across each site 

(Wilkes et al., 2017, Levick et al., 2021). However, this would have substantially increased the time 

for TLS data collection and post-processing and made the effort of data collection between ULS and 

TLS less comparable.  

Conclusions and directions for future research 

For the first time, LiDAR derived vegetation structural metrics from TLS, ULS and a fusion of both 

datasets were used to model the abundance and diversity of woodland reptiles and amphibians. Our 

study demonstrates that LiDAR data can help identify vegetation structural features associated with a 

number of different herpetofauna species. In most cases, based on our LiDAR data collection methods, 

ULS data performed as well as, or better than TLS data for modelling overall and individual species 

abundance. Notably, the combined dataset showed little or no improvement in the performance of the 

models. However, relationships between animal populations and specific vegetation structural features 

were sometimes only evident with one sensor type, and that may be due to differences in the ability of 

the sensors or manner in which they were used, to measure particular vegetation features such as CWD  

and mean canopy height.  

As we had multiple species of reptiles and amphibians, we calculated several height, volumetric and 

heterogeneity metrics across different layers of the vegetation structure to capture as much structural 
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variability as possible. However, there might be other vegetation metrics that are directly related to the 

specific species and can be calculated from LiDAR dataset, however are missing in this study. In this 

regard, future study should consider the prior knowledge of habitat use of individual species when 

calculating the landscape metrics from LiDAR dataset. In addition, some herpetofauna in the study 

area might select a landscape with close proximity to the water bodies (Evans et al., 2020). As our 96 

experimental sites did not contain any water bodies and LiDAR data collection was limited to the 

boundaries of these sites, we were unable to add any metrics related to the water bodies in this study. 

Future LiDAR research should incorporate metrics based on other landscape structural variables, such 

as rocky outcrops and hydrological features, that are also known to be important habitat features for 

some reptiles and amphibians (Jellinek et al., 2004). In addition, the data collected for this study was 

averaged over one hectare sites, but some herpetofauna primarily use landscapes at finer scales (Rotem 

et al., 2020). Future research should investigate how the scale at which LiDAR metrics are measured 

impacts their relationship to these animals. 
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Conclusion 

Many animals are associated with elements of vegetation structure that support their particular niche 

(Carrasco et al. 2019). The relationship between animals and plants is often multifaceted since 

vegetation can provide food, shelter, influence climate, interfere with or facilitate movement, and 

affect interactions with sympatric species and conspecifics (McCoy and Bell 1991; Jung et al. 2012; 

Davies and Asner 2014). LiDAR data can be useful for classifying and quantifying vegetation structure 

across wide-areas, which can help ecologists recognise and understand patterns of association between 

animals and vegetation structure across landscapes (Bergen et al 2009). An awareness of these 

associations can help ecologists and landscape managers to assess habitat quality for specific species 

and understand how particular landscape and vegetation management practices may impact animal 

populations. This information can be used to target restoration activities towards achieving specific 

structural aims that can influence a wide variety of species, such as the reintroduction of coarse woody 

debris (CWD) at Mulligan’s Flat-Goorooyaroo, or identify structural habitat-associations of individual 

species or guilds to better manage those populations and their landscapes (Freudenberger 1999; 

Manning et al. 2011).  

LiDAR is still an emerging tool for wildlife habitat assessments and most of the existing research has 

utilized data from airborne platforms that can capture information across wide areas but are often 

limited in their ability to provide structural details below forests canopies. These sensors often have 

lower resolution than data from ULS or TLS as well. For the first time, we obtained both TLS and 

ULS data across a critically endangered woodland landscape to investigate relationships between 

vegetation structure and bird, reptile and amphibian diversity and abundance. We used data from both 

sensors individually and in combination to measure vegetation structural attributes and investigate 

their importance to a broad range of bird, reptile and amphibian communities and individual species. 

Unlike most ALS data, TLS and ULS can provide detailed information on canopy, sub-canopy and 

ground layer attributes of vegetation structure, which can be particularly important for animals that 

utilize low and mid-story vegetation cover.  

Results from the first chapter showed that TLS generally measured more detailed structural 

information than ULS, especially in ground and mid-storey vegetation layers. This was due to the 

placement of the TLS on the ground and its ability to create high density point clouds. Considering 

this, I expected that the TLS data would outperform the ULS data in finding associations between 

vegetation structural variables and animal abundance, species richness and diversity.  
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The second chapter analysed the relationship between TLS and ULS LiDAR-derived vegetation 

structural variables and bird abundance, species richness and diversity. Bird communities by guilds 

and individual species’ abundance had a stronger relationship to LiDAR derived vegetation metrics 

than overall bird abundance. This outcome suggested that modelling bird habitat with LiDAR data 

generally requires a focus on individual species or groups of birds that use similar habitat types across 

similar scales. In most cases ULS models performed slightly better than TLS models. However, it is 

important to recognise that TLS may have performed better if more ground stations were used for 

collecting the terrestrial LiDAR data. Although TLS captured more detail in the understory and mid-

story, more data was occluded the in lower layers of vegetation by low-lying structural objects (LaRue 

et al. 2020), and these occlusions probably impacted the performance of the TLS data in our study. 

Nonetheless, our hypothesis that ULS would outperform TLS when finding association between 

vegetation structure and bird abundance, which was based on our sampling methods, was not 

supported.   

In the past decade, TLS has become a popular tool for measuring vegetation structure to estimate 

vegetation biomass (Hackenberg et al. 2015) and forest structural diversity (LaRue et al. 2020). 

Depending on the landscape and the aim of the research, it is common to collect anywhere from 10 to 

120 scans in a one hectare plot (Levick et al. 2021). Studies that collect a high number of scans in a 1 

ha plot typically covered a relatively small total area and focused on capturing a high detail of 

vegetation structure at fine scales (e.g., individual tree branches) (Calders et al. 2015; Hackenberg et 

al. 2015). TLS can be ideal for this purpose or for ground-truthing LiDAR scans collected over wider 

areas in less detail from airborne sensors (Levick et al., 2012). However, a limitation of TLS is that 

data collected over large areas is time consuming and access can be restricted in some places due to 

difficult terrain and/or dense vegetation. For this research, we conducted a pilot study, which suggested 

that 7 TLS scans per 1 ha plot was the minimum required to characterise 1 ha (50m × 200m) grassy 

woodland plots within a one month time frame so that, from a subjective standpoint, the data collection 

timeline would be feasible to field ecologists looking to implement this methodology and somewhat 

comparable to our ULS data collection effort, which required a week of flight time. More TLS scans 

might improve the performance of TLS models; however, this would substantially increase the time 

required for data collection and post – processing.  

In the third chapter, I developed a novel method for classifying CWD from LiDAR derived topographic 

surface variables by applying a random forest machine learning algorithm to ULS, TLS and Fusion 

datasets. CWD is an essential habitat feature that provides shelter, food and/or cover for many species 

(Pesonen et al. 2008; Manning, Cunningham, and Lindenmayer 2013). The estimation of CWD with 
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LiDAR sensors is a challenging task, because accuracy is impacted by the density of the ground 

vegetation, landscape topography, size of CWD, point density and sensor type (Polewski et al. 2017; 

Yrttimaa et al. 2019). My method revealed the contribution of several topographic and structural 

variables including DHM, roughness, ruggedness, slope and aspect to CWD detection accuracy. In 

addition, I evaluated the influence of ground cover vegetation density on model performance by 

examining the classification accuracy on low, medium and high density ground vegetation cover. High 

density ground vegetation created many false positives, which substantially decreased the 

classification accuracy in TLS and Fusion data. In contrast, ULS created less false positives in sites 

with high density ground vegetation and resulted in higher CWD classification and count accuracy. 

The ULS sensor was less impacted by low-lying structural occlusions than the TLS or Fusion data due 

to the overhead viewing angle of the sensor, and this probably explains why CWD models from ULS 

data performed better. Generally, medium and low density vegetation had less influence on CWD 

classification accuracy. CWD maps derived from this research contributed to the assessment of 

landscape use by reptiles and amphibians in Chapter 4. 

So far, most of the studies for animal habitat modelling with LiDAR sensors are strongly biased 

towards avian species (Davies and Asner 2014). Thus, there is a need to investigate habitat structure 

with LiDAR data for other taxa, such as reptiles and amphibians (Halliday 2008; Howland et al. 2016). 

In Chapter 4, I used TLS, ULS, and Fusion data to investigate relationships between vegetation 

structure and the abundance and diversity of reptiles and amphibians in a woodland landscape. This is 

one of the first studies to use LiDAR derived structural metrics to model the habitat preferences of 

herptofauna. CWD volume, vegetation height, vegetation volume and structural diversity were the 

most common significant predictors from the LiDAR datasets.  

The models derived from TLS, ULS and Fusion data were largely similar in performance. This was 

true for both herptofauna and avifauna. This suggests that ULS can capture sufficient details of 

vegetation structure for modelling habitat use by birds and reptiles in a woodland landscape. Given 

that ULS is becoming more accessible and data collection is much faster than TLS, wildlife 

management that requires structural information to assess habitat quality for woodland species could 

utilize data from ULS. In addition, ULS can be optimized for collecting information over large areas 

in more frequent time intervals (Levick et al. 2021). ULS also can be used for the calibration and 

validation of spaceborne LiDAR and SAR sensor data (Puletti et al. 2020; Levick et al. 2021), which 

opens the door to modelling landscape and vegetation structural variables for regional or even global 

scale habitat models. A recent study (Levick et al. 2021) compared the performance of TLS, ULS and 

mobile laser scanners (MLS) in characterizing three dimensional forest structures in savannah 
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ecosystem. They found that canopy structural metrics derived from these three types of sensor systems 

did not differ significantly, however ULS and MLS were advantageous in terms of time for data 

collection, which makes them more suitable for addressing many ecological problems. Significant 

differences were in individual tree and stem level modelling, where TLS provided high accuracy in 

capturing DBH and smaller stems (Levick et al. 2021). A new study by Hyyppä et al. (2021) used ULS 

to capture forest structure from below the canopy with flying height of 2-3 meters. Their research 

demonstrated that below-canopy ULS can provide more accurate measurements of height and stem 

volume. However, this method is still in early stages of development and may by applicable to sparse 

forests. Currently, flying under-canopy ULS performed manually and is more challenging in dense 

forests due to the obstructions from the forest structure. 

Future research should investigate how different spatial scales and in particular, how matching the 

spatial scale of LiDAR data to the scale of landscape use by specific species, might influence our 

ability to identify the structural habitat associations of those animals. The one hectare plots that we 

used for this study may not be an appropriate representation of structure at the scale that some species 

experience it.  Future research should also consider both a more species specific modelling approach 

for selecting structural variables thought to be important for specific species, and less specific machine 

learning approaches that do not attempt to quantify individual structural metrics from the data but 

instead identify relationships between animal populations and structure from the data contained within 

entire point-clouds. Lastly, for classifying and quantifying structural habitat elements, such as CWD, 

future research should incorporate LiDAR intensity values, which may improve classification 

accuracies (Charaniya, Manduchi, and Lodha 2004).  
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Appendices Chapter 2 

  



Chapter 2 Appendix A1. Pearson correlatio matrix of TLS variables

maxH_t meanH_t stdH_t skewH_t kurH_t p_05_t p_10_t

maxH_t 1 0.574 0.761 0.008 -0.046 0.104 0.15

meanH_t 0.574 1 0.654 -0.694 -0.554 0.672 0.721

stdH_t 0.761 0.654 1 -0.118 -0.352 0.004 0.045

skewH_t 0.008 -0.694 -0.118 1 0.828 -0.604 -0.638

kurH_t -0.046 -0.554 -0.352 0.828 1 -0.258 -0.285

p_05_t 0.104 0.672 0.004 -0.604 -0.258 1 0.992

p_10_t 0.15 0.721 0.045 -0.638 -0.285 0.992 1

p_25_t 0.264 0.838 0.173 -0.723 -0.376 0.924 0.958

p_50_t 0.41 0.951 0.412 -0.791 -0.529 0.752 0.801

p_75_t 0.588 0.966 0.732 -0.686 -0.618 0.509 0.562

p_90_t 0.71 0.83 0.946 -0.36 -0.501 0.292 0.333

p_99_t 0.873 0.652 0.896 0.017 -0.087 0.138 0.179

vci_2m_t 0.202 -0.022 0.146 -0.023 -0.09 -0.343 -0.314

vci_5m_t 0.216 0.185 0.153 -0.246 -0.328 -0.085 -0.028

vci_10m_t 0.244 0.537 0.233 -0.738 -0.738 0.314 0.344

vci_15m_t 0.655 0.601 0.739 -0.169 -0.335 0.179 0.206

vci_20m_t 0.816 0.565 0.696 -0.056 -0.105 0.164 0.201

cov_t 0.324 0.483 0.109 -0.513 -0.321 0.365 0.414

canopy_shannon_t 0.725 0.885 0.832 -0.538 -0.617 0.333 0.386

canopy_roughness_t 0.593 0.481 0.418 -0.265 -0.243 0.083 0.138

tvolume_t 0.26 0.456 0.05 -0.495 -0.262 0.387 0.43

vlayer_L1_t -0.08 -0.143 -0.073 0.029 0.014 -0.207 -0.198

vlayer_L2_t 0.128 0.256 -0.152 -0.427 -0.194 0.313 0.344

vlayer_L3_t 0.446 0.738 0.368 -0.529 -0.326 0.525 0.575

meanH_L1_t 0.23 0.12 0.279 -0.038 -0.092 -0.207 -0.192

meanH_L2_t 0.109 0.626 -0.083 -0.761 -0.441 0.82 0.844

meanH_L3_t 0.692 0.43 0.874 0.242 0.047 -0.046 -0.022

sdH_L1_t 0.295 0.094 0.304 0.077 0.002 -0.212 -0.194

sdH_L2_t 0.332 0.622 0.397 -0.729 -0.723 0.187 0.236

sdH_L3_t 0.863 0.493 0.829 0.202 0.1 0.026 0.058

roughness_L1_t 0.139 0.059 0.065 -0.171 -0.148 -0.212 -0.18

roughness_L2_t 0.239 0.402 0.008 -0.524 -0.346 0.308 0.345

roughness_L3_t 0.695 0.435 0.76 0.124 -0.017 -0.099 -0.057

vci_L1_t 0.297 0.128 0.325 0.03 -0.041 -0.202 -0.184

vci_L2_t 0.266 0.487 0.189 -0.651 -0.649 0.238 0.281

vci_L3_t 0.828 0.587 0.905 0.079 -0.079 0.068 0.101

height_cv_t 0.289 -0.315 0.498 0.671 0.234 -0.698 -0.708
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Chapter 2 Appendix A1 continued

p_25_t p_50_t p_75_t p_90_t p_99_t vci_2m_t vci_5m_t

0.264 0.41 0.588 0.71 0.873 0.202 0.216

0.838 0.951 0.966 0.83 0.652 -0.022 0.185

0.173 0.412 0.732 0.946 0.896 0.146 0.153

-0.723 -0.791 -0.686 -0.36 0.017 -0.023 -0.246

-0.376 -0.529 -0.618 -0.501 -0.087 -0.09 -0.328

0.924 0.752 0.509 0.292 0.138 -0.343 -0.085

0.958 0.801 0.562 0.333 0.179 -0.314 -0.028

1 0.918 0.7 0.447 0.291 -0.19 0.113

0.918 1 0.886 0.631 0.449 -0.032 0.197

0.7 0.886 1 0.857 0.658 0.058 0.188

0.447 0.631 0.857 1 0.844 0.047 0.17

0.291 0.449 0.658 0.844 1 0.113 0.154

-0.19 -0.032 0.058 0.047 0.113 1 0.185

0.113 0.197 0.188 0.17 0.154 0.185 1

0.436 0.56 0.592 0.337 0.178 0.226 0.301

0.288 0.443 0.619 0.742 0.718 0.113 0.274

0.299 0.422 0.556 0.67 0.803 0.221 0.243

0.527 0.557 0.439 0.233 0.205 0.576 0.423

0.542 0.76 0.923 0.898 0.787 0.169 0.366

0.302 0.464 0.499 0.43 0.448 0.548 0.397

0.54 0.556 0.392 0.187 0.146 0.46 0.36

-0.156 -0.109 -0.133 -0.106 -0.094 0.13 0.134

0.416 0.386 0.19 -0.03 -0.033 0.487 0.357

0.703 0.763 0.683 0.52 0.425 0.289 0.247

-0.092 0.073 0.207 0.19 0.238 0.625 0.03

0.87 0.767 0.49 0.184 0.059 -0.127 0.312

0.046 0.182 0.445 0.786 0.864 -0.002 0.074

-0.116 0.014 0.177 0.206 0.27 0.573 -0.042

0.411 0.647 0.692 0.462 0.312 0.363 0.359

0.146 0.28 0.505 0.727 0.955 0.112 0.102

-0.047 0.108 0.114 0.024 0.046 0.834 0.294

0.462 0.511 0.368 0.126 0.071 0.432 0.412

0.057 0.248 0.507 0.66 0.737 0.143 0.093

-0.096 0.054 0.214 0.231 0.282 0.608 -0.022

0.411 0.546 0.502 0.285 0.188 0.185 0.681

0.199 0.366 0.606 0.837 0.946 0.121 0.17

-0.7 -0.564 -0.203 0.242 0.388 0.18 -0.083
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Chapter 2 Appendix A1 continued

vci_10m_t vci_15m_t vci_20m_t cov_t canopy_shannon_t canopy_roughness_t

0.244 0.655 0.816 0.324 0.725 0.593

0.537 0.601 0.565 0.483 0.885 0.481

0.233 0.739 0.696 0.109 0.832 0.418

-0.738 -0.169 -0.056 -0.513 -0.538 -0.265

-0.738 -0.335 -0.105 -0.321 -0.617 -0.243

0.314 0.179 0.164 0.365 0.333 0.083

0.344 0.206 0.201 0.414 0.386 0.138

0.436 0.288 0.299 0.527 0.542 0.302

0.56 0.443 0.422 0.557 0.76 0.464

0.592 0.619 0.556 0.439 0.923 0.499

0.337 0.742 0.67 0.233 0.898 0.43

0.178 0.718 0.803 0.205 0.787 0.448

0.226 0.113 0.221 0.576 0.169 0.548

0.301 0.274 0.243 0.423 0.366 0.397

1 0.316 0.237 0.521 0.626 0.369

0.316 1 0.692 0.195 0.767 0.445

0.237 0.692 1 0.336 0.712 0.536

0.521 0.195 0.336 1 0.448 0.631

0.626 0.767 0.712 0.448 1 0.578

0.369 0.445 0.536 0.631 0.578 1

0.41 0.123 0.262 0.89 0.358 0.65

-0.025 -0.16 -0.143 -0.016 -0.095 0.155

0.407 -0.042 0.167 0.884 0.181 0.527

0.359 0.415 0.421 0.765 0.601 0.655

0.176 0.252 0.298 0.32 0.265 0.307

0.612 0.12 0.185 0.62 0.417 0.243

-0.172 0.645 0.664 -0.103 0.561 0.255

0.081 0.285 0.372 0.254 0.232 0.298

0.863 0.439 0.377 0.491 0.736 0.505

0.082 0.64 0.801 0.103 0.655 0.393

0.273 0.067 0.195 0.634 0.188 0.632

0.518 0.137 0.293 0.797 0.378 0.677

0.032 0.611 0.626 0.022 0.588 0.438

0.113 0.306 0.38 0.283 0.27 0.336

0.805 0.365 0.314 0.518 0.627 0.463

0.105 0.824 0.84 0.114 0.758 0.441

-0.363 0.283 0.237 -0.438 0.006 -0.044
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p_90_t
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Chapter 2 Appendix A1 continued

tvolume_t vlayer_L1_t vlayer_L2_t vlayer_L3_t meanH_L1_t meanH_L2_t

0.26 -0.08 0.128 0.446 0.23 0.109

0.456 -0.143 0.256 0.738 0.12 0.626

0.05 -0.073 -0.152 0.368 0.279 -0.083

-0.495 0.029 -0.427 -0.529 -0.038 -0.761

-0.262 0.014 -0.194 -0.326 -0.092 -0.441

0.387 -0.207 0.313 0.525 -0.207 0.82

0.43 -0.198 0.344 0.575 -0.192 0.844

0.54 -0.156 0.416 0.703 -0.092 0.87

0.556 -0.109 0.386 0.763 0.073 0.767

0.392 -0.133 0.19 0.683 0.207 0.49

0.187 -0.106 -0.03 0.52 0.19 0.184

0.146 -0.094 -0.033 0.425 0.238 0.059

0.46 0.13 0.487 0.289 0.625 -0.127

0.36 0.134 0.357 0.247 0.03 0.312

0.41 -0.025 0.407 0.359 0.176 0.612

0.123 -0.16 -0.042 0.415 0.252 0.12

0.262 -0.143 0.167 0.421 0.298 0.185

0.89 -0.016 0.884 0.765 0.32 0.62

0.358 -0.095 0.181 0.601 0.265 0.417

0.65 0.155 0.527 0.655 0.307 0.243

1 0.264 0.933 0.821 0.067 0.595

0.264 1 0.147 -0.051 -0.463 -0.072

0.933 0.147 1 0.623 0.13 0.594

0.821 -0.051 0.623 1 0.171 0.534

0.067 -0.463 0.13 0.171 1 -0.137

0.595 -0.072 0.594 0.534 -0.137 1

-0.126 -0.063 -0.312 0.193 0.149 -0.26

-0.016 -0.578 0.057 0.137 0.852 -0.213

0.421 0.056 0.347 0.435 0.327 0.486

0.042 -0.084 -0.104 0.284 0.224 -0.065

0.624 0.292 0.642 0.37 0.495 0.059

0.843 0.06 0.853 0.668 0.147 0.597

-0.01 -0.099 -0.2 0.31 0.288 -0.206

0.017 -0.555 0.081 0.168 0.916 -0.191

0.423 0.08 0.422 0.321 0.095 0.647

0.048 -0.123 -0.136 0.362 0.266 -0.051

-0.47 0.041 -0.507 -0.359 0.201 -0.821
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Chapter 2 Appendix A1 continued

meanH_L3_t sdH_L1_t sdH_L2_t sdH_L3_t roughness_L1_t roughness_L2_t

0.692 0.295 0.332 0.863 0.139 0.239

0.43 0.094 0.622 0.493 0.059 0.402

0.874 0.304 0.397 0.829 0.065 0.008

0.242 0.077 -0.729 0.202 -0.171 -0.524

0.047 0.002 -0.723 0.1 -0.148 -0.346

-0.046 -0.212 0.187 0.026 -0.212 0.308

-0.022 -0.194 0.236 0.058 -0.18 0.345

0.046 -0.116 0.411 0.146 -0.047 0.462

0.182 0.014 0.647 0.28 0.108 0.511

0.445 0.177 0.692 0.505 0.114 0.368

0.786 0.206 0.462 0.727 0.024 0.126

0.864 0.27 0.312 0.955 0.046 0.071

-0.002 0.573 0.363 0.112 0.834 0.432

0.074 -0.042 0.359 0.102 0.294 0.412

-0.172 0.081 0.863 0.082 0.273 0.518

0.645 0.285 0.439 0.64 0.067 0.137

0.664 0.372 0.377 0.801 0.195 0.293

-0.103 0.254 0.491 0.103 0.634 0.797

0.561 0.232 0.736 0.655 0.188 0.378

0.255 0.298 0.505 0.393 0.632 0.677

-0.126 -0.016 0.421 0.042 0.624 0.843

-0.063 -0.578 0.056 -0.084 0.292 0.06

-0.312 0.057 0.347 -0.104 0.642 0.853

0.193 0.137 0.435 0.284 0.37 0.668

0.149 0.852 0.327 0.224 0.495 0.147

-0.26 -0.213 0.486 -0.065 0.059 0.597

1 0.232 0.012 0.877 -0.103 -0.215

0.232 1 0.2 0.292 0.329 0.115

0.012 0.2 1 0.187 0.42 0.515

0.877 0.292 0.187 1 0.02 -0.015

-0.103 0.329 0.42 0.02 1 0.57

-0.215 0.115 0.515 -0.015 0.57 1

0.747 0.33 0.175 0.756 0.052 -0.021

0.232 0.987 0.254 0.29 0.398 0.142

-0.098 -0.016 0.815 0.089 0.307 0.579

0.92 0.333 0.269 0.939 0.029 0.01

0.636 0.274 -0.249 0.485 -0.031 -0.482
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Chapter 2 Appendix A1 continued

roughness_L3_t vci_L1_t vci_L2_t vci_L3_t height_cv_t

0.695 0.297 0.266 0.828 0.289

0.435 0.128 0.487 0.587 -0.315

0.76 0.325 0.189 0.905 0.498

0.124 0.03 -0.651 0.079 0.671

-0.017 -0.041 -0.649 -0.079 0.234

-0.099 -0.202 0.238 0.068 -0.698

-0.057 -0.184 0.281 0.101 -0.708

0.057 -0.096 0.411 0.199 -0.7

0.248 0.054 0.546 0.366 -0.564

0.507 0.214 0.502 0.606 -0.203

0.66 0.231 0.285 0.837 0.242

0.737 0.282 0.188 0.946 0.388

0.143 0.608 0.185 0.121 0.18

0.093 -0.022 0.681 0.17 -0.083

0.032 0.113 0.805 0.105 -0.363

0.611 0.306 0.365 0.824 0.283

0.626 0.38 0.314 0.84 0.237

0.022 0.283 0.518 0.114 -0.438

0.588 0.27 0.627 0.758 0.006

0.438 0.336 0.463 0.441 -0.044

-0.01 0.017 0.423 0.048 -0.47

-0.099 -0.555 0.08 -0.123 0.041

-0.2 0.081 0.422 -0.136 -0.507

0.31 0.168 0.321 0.362 -0.359

0.288 0.916 0.095 0.266 0.201

-0.206 -0.191 0.647 -0.051 -0.821

0.747 0.232 -0.098 0.92 0.636

0.33 0.987 -0.016 0.333 0.274

0.175 0.254 0.815 0.269 -0.249

0.756 0.29 0.089 0.939 0.485

0.052 0.398 0.307 0.029 -0.031

-0.021 0.142 0.579 0.01 -0.482

1 0.345 0.031 0.802 0.451

0.345 1 0.024 0.342 0.258

0.031 0.024 1 0.156 -0.384

0.802 0.342 0.156 1 0.488

0.451 0.258 -0.384 0.488 1



Chapter 2 Appendix A2. Pearson correlation matrix of ULS variables

maxH_u meanH_u stdH_u skewH_u kurH_u p_05_u p_10_u

maxH_u 1 0.632 0.771 -0.005 -0.101 0.143 0.175

meanH_u 0.632 1 0.573 -0.68 -0.418 0.602 0.676

stdH_u 0.771 0.573 1 -0.01 -0.376 -0.163 -0.105

skewH_u -0.005 -0.68 -0.01 1 0.637 -0.568 -0.625

kurH_u -0.101 -0.418 -0.376 0.637 1 -0.012 -0.04

p_05_u 0.143 0.602 -0.163 -0.568 -0.012 1 0.983

p_10_u 0.175 0.676 -0.105 -0.625 -0.04 0.983 1

p_25_u 0.28 0.82 0.037 -0.736 -0.151 0.889 0.942

p_50_u 0.479 0.957 0.356 -0.791 -0.389 0.652 0.726

p_75_u 0.666 0.945 0.715 -0.626 -0.53 0.376 0.453

p_90_u 0.749 0.805 0.925 -0.292 -0.468 0.18 0.245

p_99_u 0.952 0.65 0.85 0.042 -0.09 0.117 0.158

vci_2m_u 0.333 0.015 0.238 0.125 0.01 -0.262 -0.243

vci_5m_u 0.238 0.053 0.181 -0.003 -0.315 -0.215 -0.21

vci_10m_u 0.276 0.412 0.177 -0.544 -0.662 0.159 0.182

vci_15m_u 0.609 0.606 0.65 -0.325 -0.593 0.142 0.185

vci_20m_u 0.811 0.615 0.691 -0.135 -0.218 0.172 0.212

cov_u 0.393 0.327 0.077 -0.225 -0.081 0.277 0.263

canopy_shannon_u 0.806 0.789 0.829 -0.365 -0.583 0.124 0.183

canopy_roughness_u 0.608 0.557 0.395 -0.288 -0.256 0.209 0.24

tvolume_u 0.294 0.366 0.009 -0.371 -0.146 0.29 0.299

vlayer_L1_u 0.18 0.197 0.021 -0.3 -0.146 0.017 0.034

vlayer_L2_u 0.14 0.109 -0.18 -0.224 -0.055 0.2 0.175

vlayer_L3_u 0.454 0.665 0.239 -0.471 -0.211 0.468 0.512

meanH_L1_u 0.219 -0.11 0.445 0.274 -0.121 -0.566 -0.507

meanH_L2_u 0.077 0.417 -0.31 -0.576 -0.211 0.762 0.733

meanH_L3_u 0.701 0.527 0.927 0.108 -0.164 -0.057 -0.003

sdH_L1_u 0.255 -0.007 0.468 0.187 -0.213 -0.487 -0.414

sdH_L2_u 0.239 0.539 0.244 -0.699 -0.57 0.089 0.181

sdH_L3_u 0.897 0.549 0.859 0.15 -0.052 0.003 0.043

roughness_L1_u 0.22 -0.022 0.436 0.113 -0.279 -0.548 -0.482

roughness_L2_u 0.176 0.359 -0.037 -0.465 -0.364 0.27 0.314

roughness_L3_u 0.638 0.48 0.827 0.113 -0.176 -0.095 -0.029

vci_L1_u 0.262 -0.03 0.478 0.214 -0.2 -0.51 -0.443

vci_L2_u 0.328 0.341 0.297 -0.377 -0.661 -0.096 -0.059

vci_L3_u 0.866 0.668 0.926 -0.037 -0.282 0.041 0.099

height_cv_u 0.214 -0.365 0.537 0.693 0.05 -0.759 -0.761



Chapter 2 Appendix A2 continued

p_25_u p_50_u p_75_u p_90_u p_99_u vci_2m_u vci_5m_u vci_10m_u vci_15m_u

0.28 0.479 0.666 0.749 0.952 0.333 0.238 0.276 0.609

0.82 0.957 0.945 0.805 0.65 0.015 0.053 0.412 0.606

0.037 0.356 0.715 0.925 0.85 0.238 0.181 0.177 0.65

-0.736 -0.791 -0.626 -0.292 0.042 0.125 -0.003 -0.544 -0.325

-0.151 -0.389 -0.53 -0.468 -0.09 0.01 -0.315 -0.662 -0.593

0.889 0.652 0.376 0.18 0.117 -0.262 -0.215 0.159 0.142

0.942 0.726 0.453 0.245 0.158 -0.243 -0.21 0.182 0.185

1 0.884 0.619 0.378 0.268 -0.172 -0.104 0.282 0.284

0.884 1 0.871 0.62 0.47 -0.012 0.049 0.451 0.483

0.619 0.871 1 0.861 0.68 0.094 0.097 0.471 0.671

0.378 0.62 0.861 1 0.823 0.109 0.122 0.244 0.698

0.268 0.47 0.68 0.823 1 0.294 0.202 0.22 0.617

-0.172 -0.012 0.094 0.109 0.294 1 0.19 0.149 0.198

-0.104 0.049 0.097 0.122 0.202 0.19 1 0.298 0.223

0.282 0.451 0.471 0.244 0.22 0.149 0.298 1 0.608

0.284 0.483 0.671 0.698 0.617 0.198 0.223 0.608 1

0.311 0.48 0.622 0.715 0.795 0.255 0.237 0.269 0.629

0.312 0.364 0.288 0.139 0.313 0.637 0.38 0.308 0.262

0.359 0.668 0.871 0.872 0.821 0.251 0.351 0.58 0.807

0.381 0.538 0.557 0.457 0.514 0.292 0.289 0.398 0.507

0.392 0.447 0.307 0.105 0.207 0.321 0.371 0.293 0.238

0.161 0.288 0.198 0.022 0.104 0.334 0.241 0.253 0.141

0.212 0.204 0.052 -0.127 0.044 0.329 0.382 0.266 0.066

0.624 0.694 0.59 0.414 0.405 0.189 0.305 0.248 0.431

-0.445 -0.237 0.082 0.234 0.255 0.536 -0.016 0.084 0.247

0.699 0.537 0.221 -0.026 -0.003 -0.133 0.238 0.427 0.101

0.092 0.295 0.589 0.887 0.815 0.103 0.074 -0.077 0.508

-0.339 -0.135 0.172 0.3 0.288 0.375 0.124 0.152 0.337

0.397 0.616 0.579 0.323 0.211 0.22 0.115 0.739 0.489

0.141 0.352 0.612 0.787 0.961 0.281 0.195 0.207 0.586

-0.366 -0.117 0.178 0.25 0.241 0.315 0.179 0.204 0.31

0.412 0.444 0.291 0.098 0.129 0.134 0.37 0.53 0.318

0.075 0.281 0.543 0.789 0.743 0.122 0.069 0.01 0.488

-0.374 -0.163 0.157 0.297 0.291 0.455 0.107 0.137 0.33

0.115 0.368 0.405 0.298 0.291 0.205 0.574 0.778 0.535

0.225 0.468 0.736 0.906 0.929 0.243 0.199 0.274 0.762

-0.754 -0.574 -0.175 0.229 0.297 0.227 0.087 -0.255 0.145



Chapter 2 Appendix A2 continued

vci_20m_u cov_u canopy_shannon_u canopy_roughness_u tvolume_u vlayer_L1_u vlayer_L2_u

0.811 0.393 0.806 0.608 0.294 0.18 0.14

0.615 0.327 0.789 0.557 0.366 0.197 0.109

0.691 0.077 0.829 0.395 0.009 0.021 -0.18

-0.135 -0.225 -0.365 -0.288 -0.371 -0.3 -0.224

-0.218 -0.081 -0.583 -0.256 -0.146 -0.146 -0.055

0.172 0.277 0.124 0.209 0.29 0.017 0.2

0.212 0.263 0.183 0.24 0.299 0.034 0.175

0.311 0.312 0.359 0.381 0.392 0.161 0.212

0.48 0.364 0.668 0.538 0.447 0.288 0.204

0.622 0.288 0.871 0.557 0.307 0.198 0.052

0.715 0.139 0.872 0.457 0.105 0.022 -0.127

0.795 0.313 0.821 0.514 0.207 0.104 0.044

0.255 0.637 0.251 0.292 0.321 0.334 0.329

0.237 0.38 0.351 0.289 0.371 0.241 0.382

0.269 0.308 0.58 0.398 0.293 0.253 0.266

0.629 0.262 0.807 0.507 0.238 0.141 0.066

1 0.316 0.768 0.529 0.322 0.239 0.179

0.316 1 0.333 0.5 0.792 0.514 0.779

0.768 0.333 1 0.612 0.303 0.216 0.105

0.529 0.5 0.612 1 0.521 0.448 0.339

0.322 0.792 0.303 0.521 1 0.815 0.925

0.239 0.514 0.216 0.448 0.815 1 0.698

0.179 0.779 0.105 0.339 0.925 0.698 1

0.439 0.695 0.501 0.612 0.852 0.563 0.637

0.132 -0.002 0.234 -0.077 -0.202 -0.089 -0.184

0.146 0.435 0.171 0.228 0.47 0.218 0.477

0.646 -0.041 0.667 0.293 -0.109 -0.116 -0.294

0.224 -0.029 0.333 -0.002 -0.134 -0.159 -0.116

0.336 0.254 0.556 0.386 0.368 0.452 0.247

0.773 0.217 0.782 0.435 0.104 0.042 -0.037

0.231 -0.043 0.339 0.018 0.044 0.159 0.039

0.249 0.397 0.38 0.306 0.49 0.281 0.475

0.598 -0.07 0.666 0.299 -0.146 -0.17 -0.325

0.223 0.008 0.321 0 -0.143 -0.14 -0.125

0.354 0.274 0.657 0.437 0.288 0.285 0.252

0.839 0.196 0.882 0.517 0.134 0.072 -0.065

0.158 -0.275 0.093 -0.126 -0.379 -0.195 -0.349



Chapter 2 Appendix A2 continued

vlayer_L3_u meanH_L1_u meanH_L2_u meanH_L3_u sdH_L1_u sdH_L2_u sdH_L3_u roughness_L1_u

0.454 0.219 0.077 0.701 0.255 0.239 0.897 0.22

0.665 -0.11 0.417 0.527 -0.007 0.539 0.549 -0.022

0.239 0.445 -0.31 0.927 0.468 0.244 0.859 0.436

-0.471 0.274 -0.576 0.108 0.187 -0.699 0.15 0.113

-0.211 -0.121 -0.211 -0.164 -0.213 -0.57 -0.052 -0.279

0.468 -0.566 0.762 -0.057 -0.487 0.089 0.003 -0.548

0.512 -0.507 0.733 -0.003 -0.414 0.181 0.043 -0.482

0.624 -0.445 0.699 0.092 -0.339 0.397 0.141 -0.366

0.694 -0.237 0.537 0.295 -0.135 0.616 0.352 -0.117

0.59 0.082 0.221 0.589 0.172 0.579 0.612 0.178

0.414 0.234 -0.026 0.887 0.3 0.323 0.787 0.25

0.405 0.255 -0.003 0.815 0.288 0.211 0.961 0.241

0.189 0.536 -0.133 0.103 0.375 0.22 0.281 0.315

0.305 -0.016 0.238 0.074 0.124 0.115 0.195 0.179

0.248 0.084 0.427 -0.077 0.152 0.739 0.207 0.204

0.431 0.247 0.101 0.508 0.337 0.489 0.586 0.31

0.439 0.132 0.146 0.646 0.224 0.336 0.773 0.231

0.695 -0.002 0.435 -0.041 -0.029 0.254 0.217 -0.043

0.501 0.234 0.171 0.667 0.333 0.556 0.782 0.339

0.612 -0.077 0.228 0.293 -0.002 0.386 0.435 0.018

0.852 -0.202 0.47 -0.109 -0.134 0.368 0.104 0.044

0.563 -0.089 0.218 -0.116 -0.159 0.452 0.042 0.159

0.637 -0.184 0.477 -0.294 -0.116 0.247 -0.037 0.039

1 -0.221 0.446 0.17 -0.093 0.341 0.285 -0.034

-0.221 1 -0.558 0.341 0.904 0.125 0.343 0.804

0.446 -0.558 1 -0.329 -0.442 0.241 -0.109 -0.419

0.17 0.341 -0.329 1 0.363 0.029 0.828 0.28

-0.093 0.904 -0.442 0.363 1 0.168 0.376 0.873

0.341 0.125 0.241 0.029 0.168 1 0.171 0.265

0.285 0.343 -0.109 0.828 0.376 0.171 1 0.314

-0.034 0.804 -0.419 0.28 0.873 0.265 0.314 1

0.461 -0.097 0.583 -0.182 0.047 0.502 0.044 0.128

0.149 0.36 -0.283 0.855 0.405 0.08 0.75 0.298

-0.116 0.945 -0.475 0.37 0.99 0.15 0.381 0.86

0.233 0.13 0.328 0.099 0.234 0.664 0.267 0.295

0.379 0.334 -0.107 0.883 0.401 0.291 0.935 0.354

-0.393 0.608 -0.818 0.536 0.522 -0.277 0.409 0.489



Chapter 2 Appendix A2 continued

roughness_L2_u roughness_L3_u vci_L1_u vci_L2_u vci_L3_u height_cv_u

0.176 0.638 0.262 0.328 0.866 0.214

0.359 0.48 -0.03 0.341 0.668 -0.365

-0.037 0.827 0.478 0.297 0.926 0.537

-0.465 0.113 0.214 -0.377 -0.037 0.693

-0.364 -0.176 -0.2 -0.661 -0.282 0.05

0.27 -0.095 -0.51 -0.096 0.041 -0.759

0.314 -0.029 -0.443 -0.059 0.099 -0.761

0.412 0.075 -0.374 0.115 0.225 -0.754

0.444 0.281 -0.163 0.368 0.468 -0.574

0.291 0.543 0.157 0.405 0.736 -0.175

0.098 0.789 0.297 0.298 0.906 0.229

0.129 0.743 0.291 0.291 0.929 0.297

0.134 0.122 0.455 0.205 0.243 0.227

0.37 0.069 0.107 0.574 0.199 0.087

0.53 0.01 0.137 0.778 0.274 -0.255

0.318 0.488 0.33 0.535 0.762 0.145

0.249 0.598 0.223 0.354 0.839 0.158

0.397 -0.07 0.008 0.274 0.196 -0.275

0.38 0.666 0.321 0.657 0.882 0.093

0.306 0.299 0 0.437 0.517 -0.126

0.49 -0.146 -0.143 0.288 0.134 -0.379

0.281 -0.17 -0.14 0.285 0.072 -0.195

0.475 -0.325 -0.125 0.252 -0.065 -0.349

0.461 0.149 -0.116 0.233 0.379 -0.393

-0.097 0.36 0.945 0.13 0.334 0.608

0.583 -0.283 -0.475 0.328 -0.107 -0.818

-0.182 0.855 0.37 0.099 0.883 0.536

0.047 0.405 0.99 0.234 0.401 0.522

0.502 0.08 0.15 0.664 0.291 -0.277

0.044 0.75 0.381 0.267 0.935 0.409

0.128 0.298 0.86 0.295 0.354 0.489

1 0.025 0 0.579 0.101 -0.446

0.025 1 0.403 0.185 0.817 0.461

0 0.403 1 0.209 0.401 0.558

0.579 0.185 0.209 1 0.355 -0.086

0.101 0.817 0.401 0.355 1 0.38

-0.446 0.461 0.558 -0.086 0.38 1



TLS ULS TLS ULS TLS ULS TLS ULS

-6.085 -8.385* -0.942 -1.385** -0.06 -0.085** -0.003 0.001

(4.251) (4.076) (0.535) (0.502) (0.032) (0.029) (0.007) (0.007)

5.469 1.414 0.442 -0.316 0.033 0.003 -0.004 -0.001

(4.882) (4.923) (0.638) (0.657) (0.038) (0.038) (0.008) (0.008)

5.917 7.530 0.719 -0.465 0.008 -0.054 -0.014 -0.013

(4.414) (4.512) (0.561) (0.578) (0.033) (0.033) (0.007) (0.007)

-2.241 -0.640 -0.332 0.894 -0.015 0.063* 0.002

(3.695) (3.938) (0.451) (0.491) (0.027) (0.028) (0.007)

126.864*** 126.935*** 22.142*** 22.111*** 2.629*** 2.627*** 0.672*** 0.6715146

(6.777) (6.424) (1.091) (1.057) (0.065) (0.064) (0.008) 0.008 

Log Likelihood -457.502 -457.036 -273.980 -273.001 -22.814 -19.436 103.288 103.964

Akaike Inf. Crit. 929.004 928.073 561.959 560.001 59.628 52.872 -192.576 -193.928

Bayesian Inf. Crit. 946.807 945.876 579.762 577.804 77.431 70.675 -174.773 -176.125

Marginal R2 0.057 0.071 0.043 0.078 0.036 0.100 0.044 0.039

Conditional R2 0.516 0.485 0.681 0.679 0.677 0.710 0.173 0.153

PCA3

PCA4

Intercept

AbundanceExplanatory Varibles

Response variables

PCA1

PCA2

FEveBird_shannonSR

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Chapter 2 Appendix A3. Linear mixed effects model of bird abundance (Abundance), 

species richness (SR), bird Shannon diversity index (Bird_shannon), functional richness 

(FRic), functional evenness (FEve), functional divergence (FDiv), functional dispersion 

(FDis), Rao's quadratic entropy (RaoQ) in relation to vegetation structural metrics – 

PCA1, PCA2, PCA3, PCA4 calculated from all the LiDAR variables



Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

PCA3

PCA4

Intercept

Explanatory Varibles

PCA1

PCA2

TLS ULS TLS ULS TLS ULS

0.002 -0.001 0.000 -0.002 0.000 -0.001

(0.004) (0.004) (0.002) (0.002) (0.001) (0.001)

0.005 0.006 0.005 0.005 0.002 0.002

(0.004) (0.004) (0.003) (0.003) (0.001) (0.001)

0.006 0.004 0.001 -0.002 0.001 -0.001

(0.004) (0.004) (0.002) (0.002) (0.001) (0.001)

-0.003 0.000 0.000 0.000 0.000

(0.004) (0.002) (0.002) (0.001) (0.001)

0.874*** 0.874*** 0.242*** 0.242*** 0.065*** 0.065***

(0.004) (0.004) (0.003) (0.003) (0.001) (0.001)

166.213 161.460 208.105 208.639 276.918 277.400

-320.427 -308.920 -402.211 -403.278 -539.836 -540.801

-305.167 -291.117 -384.408 -385.475 -522.033 -522.998

0.050 0.048 0.049 0.062 0.047 0.061

0.067 0.073 0.274 0.306 0.293 0.364

Response variables

RaoQFDisFDiv

Chapter 2 Appendix A3 continued



Response variables

TLS ULS TLS ULS TLS ULS

2.240 4.623 0.542 0.836 0.053 0.043

(8.549) (9.801) (0.985) (1.120) (0.057) (0.064)

-15.029 -24.253 7.733** 5.031 0.414** 0.333*

(22.545) (23.796) (2.596) (2.714) (0.150) (0.156)

-11.727 -8.657 3.969* 2.366 0.205* 0.143

(14.444) (11.348) (1.665) (1.281) (0.096) (0.073)

2.729 -3.565 -1.089 -0.476 -0.101 -0.025

(8.689) (4.833) (1.008) (0.548) (0.058) (0.031)

-2.202 -2.314 0.960 -0.457 0.062 0.029

(6.710) (5.545) (0.778) (0.650) (0.045) (0.037)

8.823 8.734 -0.896 -0.317 -0.086 -0.029

(6.738) (7.040) (0.781) (0.819) (0.045) (0.047)

-8.506 2.341 -1.467 -0.827 -0.123* -0.062

(7.779) (6.393) (0.917) (0.788) (0.053) (0.045)

10.178 3.584 1.899 1.672* 0.157* 0.092*

(9.706) (6.278) (1.152) (0.765) (0.066) (0.044)

20.177 28.138 -5.966** -3.749 -0.354** -0.252*

(16.514) (17.502) (1.905) (2.041) (0.110) (0.117)

-2.318 10.831 0.165 0.720 0.053 0.051

(6.533) (6.295) (0.762) (0.786) (0.044) (0.045)

-6.992 -10.257 -0.070 0.440 0.034 0.013

(9.407) (7.134) (1.099) (0.860) (0.063) (0.049)

-7.699 -24.2 4.761** 2.776 0.334*** 0.195

(13.531) (16.528) (1.564) (1.957) (0.090) (0.112)

126.918*** 126.949*** 22.072*** 22.088*** 2.625*** 2.626***

(7.206) (6.161) (0.988) (1.102) (0.055) (0.065)

Log Likelihood -430.240 -430.281 -257.983 -261.017 -26.362 -30.058

Akaike Inf. Crit. 890.480 890.561 545.966 552.035 82.724 90.117

Bayesian Inf. Crit. 928.630 928.711 584.116 590.184 120.874 128.266

Marginal R2 0.097 0.164 0.139 0.141 0.171 0.161

Conditional R2 0.576 0.502 0.690 0.737 0.684 0.757

vci_5m

Abundance SR Bird_shannon

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Chapter 2 Appendix A4. Linear mixed effects model of bird abundance (Abundance), 

species richness (SR), bird diversity index (Bird_shannon), functional richness (FRic), 

functional evennes (FEve), functional divergence (FDiv), functional dispersion (FDis), 

Rao's quadratic entropy (RaoQ) in relation to vegetation structural metrics.

vci_L2

height_cv

Intercept

Explanatory variables

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

maxH

meanH

skewH

vci_2m



Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

vci_5m

vci_L2

height_cv

Intercept

Explanatory variables

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

maxH

meanH

skewH

vci_2m

Response variables

TLS ULS TLS ULS TLS ULS TLS ULS

0.016 0.019 0.006 0.009 -0.001 0.002 -0.001 -0.001

(0.016) (0.018) (0.008) (0.009) (0.005) (0.005) (0.002) (0.002)

-0.042 -0.020 -0.028 -0.036 0.006 -0.010 0.006 -0.001

(0.042) (0.044) (0.021) (0.022) (0.013) (0.013) (0.006) (0.006)

-0.04 -0.035 -0.023 -0.012 0.002 0.003 0.003 0.003

(0.027) (0.021) (0.014) (0.011) (0.008) (0.006) (0.004) (0.003)

-0.021 0.013 -0.009 -0.002 -0.010* -0.004 -0.005* -0.002

(0.016) (0.009) (0.008) (0.005) (0.005) (0.003) (0.002) (0.001)

-0.023 0.004 -0.005 -0.009 0.001 0.001 0.001 0.0005

(0.012) (0.010) (0.006) (0.005) (0.004) (0.003) (0.002) (0.001)

-0.026* -0.019 -0.016** -0.013* -0.009* -0.003 -0.004* -0.001

(0.012) (0.013) (0.006) (0.006) (0.004) (0.004) (0.002) (0.002)

0.007 0.004 0.018** 0.005 0.005 0.001 0.002 0.001

(0.013) (0.011) (0.007) (0.005) (0.004) (0.003) (0.002) (0.002)

0.028 0.007 -0.011 -0.003 -0.00002 0.002 0.0005 0.001

(0.017) (0.011) (0.008) (0.005) (0.005) (0.003) (0.002) (0.002)

0.013 -0.007 0.026 0.034* -0.003 0.013 -0.004 0.004

(0.031) (0.031) (0.016) (0.016) (0.009) (0.010) (0.004) (0.004)

0.014 -0.010 -0.001 0.007 0.005 0.010** 0.002 0.005**

(0.012) (0.011) (0.006) (0.005) (0.004) (0.003) (0.002) (0.002)

0.017 -0.008 0.005 0.010 0.005 0.004 0.002 0.002

(0.017) (0.012) (0.008) (0.006) (0.005) (0.004) (0.002) (0.002)

0.028 0.026 -0.004 -0.023 0.012 -0.013 0.008* -0.004

(0.025) (0.029) (0.013) (0.015) (0.008) (0.009) (0.004) (0.004)

0.671*** 0.671*** 0.874*** 0.874*** 0.242*** 0.242*** 0.065*** 0.065***

(0.009) (0.008) (0.004) (0.004) (0.003) (0.003) (0.001) (0.001)

83.110 80.863 138.186 136.399 178.161 178.534 241.139 240.941

-136.220 -131.727 -246.373 -242.798 -326.323 -327.067 -452.278 -451.883

-98.071 -93.577 -208.223 -204.648 -288.173 -288.918 -414.129 -413.733

0.158 0.137 0.207 0.187 0.149 0.181 0.153 0.171

0.315 0.228 0.347 0.271 0.358 0.347 0.388 0.436

RaoQFDisFEve FDiv

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Chapter 2 Appendix A4 continued



Independent variables

TLS ULS TLS ULS TLS ULS

maxH -0.355 -0.619** -1.097* 0.102 0.143** 0.189**

(0.208) (0.231) (0.524) (0.507) (0.055) (0.059)

meanH 0.527 0.815 4.053* -0.781 -0.386** -0.218

(0.502) (0.524) (1.711) (1.479) (0.138) (0.142)

skewH 0.249 0.413 2.719* 1.057 -0.210* -0.098

(0.325) (0.245) (1.082) (0.722) (0.090) (0.065)

vci_2m 0.073 -0.003 0.083 -0.582 -0.061 -0.099**

(0.218) (0.099) (0.445) (0.329) (0.057) (0.034)

vci_5m 0.015 0.049 1.523** 1.704** -0.115** -0.198***

(0.135) (0.110) (0.550) (0.599) (0.039) (0.030)

vci_15m -0.008 -0.070 0.849 1.801** 0.022 -0.124*

(0.178) (0.182) (0.472) (0.562) (0.049) (0.049)

canopy_roughness 0.501** 0.476** 0.120 0.191 -0.08 -0.106*

(0.160) (0.146) (0.381) (0.328) (0.054) (0.046)

tvolume -0.439 -0.274 -0.019 0.401 -0.113 0.037

(0.287) (0.156) (0.596) (0.348) (0.073) (0.049)

meanH_L3 -0.231 -0.277 -3.019* 0.396 0.292** 0.201

(0.367) (0.390) (1.264) (1.237) (0.102) (0.107)

vci_L1 0.103 0.169 -0.264 0.724* 0.032 0.256***

(0.169) (0.156) (0.292) (0.299) (0.047) (0.050)

vci_L2 -0.112 -0.010 -0.212 -0.411 -0.037 0.054

(0.220) (0.169) (0.679) (0.491) (0.063) (0.046)

height_cv 0.274 0.324 1.740 -1.622 -0.102 -0.014

(0.321) (0.377) (0.906) (1.187) (0.093) (0.111)

Intercept 0.484* 0.463* -1.986** -2.322*** 3.238*** 3.229***

-0.19 -0.207 -0.618 -0.686 -0.103 -0.099

Log Likelihood -182.568 -182.448 -101.284 -96.176 -397.457 -373.766

Akaike Inf. Crit. 393.135 392.896 230.567 220.351 822.914 775.531

Bayesian Inf. Crit. 428.741 428.502 266.173 255.957 858.52 811.137

Marginal R2 0.238 0.150 0.399 0.408 0.249 0.370

Conditional R2 0.488 0.552 0.649 0.597 0.711 0.756

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Chapter 2 Appendix A5. Model summary of the relationship between LiDAR 

derived vegetation structural metrics (independent variables) and bird abundance 

by guilds  (dependent variables).

Dependent 

variables
GS.HC WB.HC WG.HC



maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

Dependent 

variables

Chapter 2 Appendix A5 continued

Independent variables

TLS ULS TLS ULS TLS ULS

-0.011 -0.009 -0.109** -0.203*** -4.057** -2.918*

(0.033) (0.035) (0.039) (0.042) (1.489) (1.193)

-0.041 -0.014 0.320** 0.277** 4.365 4.090*

(0.082) (0.087) (0.099) (0.103) (2.700) (2.065)

-0.046 -0.050 0.180** 0.164*** 4.509* 2.635*

(0.052) (0.040) (0.062) (0.048) (2.085) (1.103)

0.096** 0.011 0.125** 0.006 -0.311 -0.599

(0.032) (0.017) (0.039) (0.020) (0.598) (0.563)

0.017 0.020 0.060 0.009 -0.745 -0.725

(0.026) (0.021) (0.034) (0.028) (0.474) (0.472)

0.092*** 0.069* -0.027 -0.015 0.358 -0.090

(0.028) (0.028) (0.033) (0.032) (0.506) (0.521)

-0.128*** -0.03 -0.075* 0.046 -0.513 0.278

(0.031) (0.026) (0.035) (0.030) (0.693) (0.456)

0.108** 0.030 0.120* 0.088** 2.007* 1.107

(0.040) (0.025) (0.047) (0.029) (0.796) (0.626)

0.114 0.091 -0.107 -0.016 -0.562 -0.886

(0.064) (0.069) (0.078) (0.081) (1.066) (1.202)

-0.073** 0.025 -0.063* 0.009 0.159 -0.088

(0.024) (0.027) (0.029) (0.032) (0.322) (0.471)

-0.040 -0.056 -0.061 -0.007 1.891* 1.084

(0.038) (0.029) (0.045) (0.035) (0.936) (0.630)

-0.049 -0.014 0.150* 0.120 1.555 1.977

(0.057) (0.067) (0.069) (0.079) (0.992) (1.245)

4.488*** 4.493*** 4.120*** 4.126*** -3.299*** -3.016***

-0.062 -0.062 -0.071 -0.074 -0.943 -0.865

-526.675 -551.886 -496.938 -517.229 -56.296 -59.607

1 081.349 1 131.772 1 021.876 1 062.459 140.592 147.215

1 116.956 1 167.379 1 057.482 1 098.065 176.198 182.821

0.203 0.194 0.216 0.179 0.338 0.355

0.598 0.508 0.592 0.534 0.566 0.443

Grnd.NestWS.HC Arb.Nest



maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

Dependent 

variables

Chapter 2 Appendix A5 continued

Independent variables

TLS ULS TLS ULS TLS ULS

0.211*** 0.323*** 0.173 0.090 -0.072 -0.239

(0.046) (0.048) (0.109) (0.116) (0.194) (0.199)

-0.605*** -0.583*** 0.027 0.571 -1.514** -0.390

(0.114) (0.119) (0.274) (0.292) (0.502) (0.461)

-0.375*** -0.319*** 0.011 0.173 -1.095*** -0.091

(0.072) (0.054) (0.172) (0.145) (0.318) (0.246)

-0.015 -0.048 0.003 0.077 -0.168 -0.242

(0.044) (0.025) (0.111) (0.081) (0.219) (0.141)

-0.082** -0.073** 0.019 0.078 -0.126 -0.371**

(0.030) (0.024) (0.093) (0.080) (0.168) (0.119)

0.223*** 0.118** 0.012 -0.041 0.729*** 0.407*

(0.042) (0.041) (0.097) (0.099) (0.205) (0.191)

-0.154*** -0.115** -0.316** -0.295** -0.047 0.047

(0.044) (0.037) (0.109) (0.094) (0.200) (0.158)

-0.060 -0.036 0.343* 0.001 0.151 0.100

(0.059) (0.038) (0.138) (0.086) (0.265) (0.150)

0.373*** 0.333*** 0.004 -0.266 0.945* 0.529

(0.084) (0.093) (0.209) (0.224) (0.385) (0.345)

-0.002 0.177*** -0.068 -0.096 -0.236 -0.111

(0.037) (0.040) (0.077) (0.089) (0.154) (0.155)

-0.031 -0.078* 0.093 0.156 -0.042 0.392*

(0.052) (0.039) (0.132) (0.100) (0.279) (0.179)

-0.237** -0.246** 0.244 0.448* -0.420 0.045

(0.074) (0.094) (0.194) (0.227) (0.397) (0.385)

3.734*** 3.731*** 1.643*** 1.635*** 0.284 0.290

-0.105 -0.095 -0.222 -0.247 -0.334 -0.343

-440.019 -415.733 -313.209 -316.977 -220.378 -225.865

908.038 859.467 654.418 661.954 468.755 479.729

943.644 895.073 690.024 697.56 504.362 515.336

0.196 0.287 0.137 0.090 0.085 0.068

0.777 0.799 0.662 0.706 0.588 0.565

Hol.Nest Opp.Nest Usty.Nest



maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

Dependent 

variables

Chapter 2 Appendix A5 continued

Independent variables

TLS ULS TLS ULS TLS ULS

0.042 0.246 -1.097* 0.102 0.093* 0.140***

(0.337) (0.380) (0.524) (0.507) (0.037) (0.040)

-0.608 -2.176* 4.053* -0.781 -0.067 -0.168

(0.703) (0.891) (1.711) (1.479) (0.094) (0.098)

-0.094 -0.546 2.719* 1.057 -0.099 -0.151***

(0.446) (0.458) (1.082) (0.722) (0.060) (0.046)

0.245 0.357 0.083 -0.582 0.025 0.008

(0.235) (0.198) (0.445) (0.329) (0.036) (0.020)

0.045 -0.055 1.523** 1.704** 0.039 0.047*

(0.269) (0.165) (0.550) (0.599) (0.028) (0.024)

-0.106 0.049 0.849 1.801** 0.070* 0.061

(0.234) (0.246) (0.472) (0.562) (0.032) (0.032)

-0.469 -0.064 0.120 0.191 -0.152*** -0.059*

(0.244) (0.233) (0.381) (0.328) (0.035) (0.030)

1.247*** 0.660** -0.019 0.401 0.081 0.009

(0.364) (0.227) (0.596) (0.348) (0.045) (0.028)

1.276* 2.305** -3.019* 0.396 0.084 0.156*

(0.620) (0.832) (1.264) (1.237) (0.072) (0.077)

0.051 -0.259 -0.264 0.724* -0.061* 0.071*

(0.181) (0.256) (0.292) (0.299) (0.028) (0.030)

-0.359 -0.310 -0.212 -0.411 -0.027 -0.082*

(0.323) (0.264) (0.679) (0.491) (0.043) (0.033)

-0.202 -0.864 1.740 -1.622 0.0003 -0.101

(0.561) (0.677) (0.906) (1.187) (0.064) (0.076)

-0.895 -0.94 -1.986** -2.322*** 4.210*** 4.212***

-0.463 -0.513 -0.618 -0.686 -0.062 -0.058

-149 -155.902 -101.284 -96.176 -483.271 -488.543

325.999 339.804 230.567 220.351 994.542 1 005.087

361.605 375.41 266.173 255.957 1 030.148 1 040.693

0.204 0.161 0.399 0.408 0.185 0.238

0.424 0.427 0.649 0.597 0.576 0.547

Air.Forage Aqu.Forage Arb.Forage



maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

Dependent 

variables

Chapter 2 Appendix A5 continued

Independent variables

TLS ULS TLS ULS TLS ULS

-0.045 -0.062 -0.171* -0.190* 0.011 0.014

(0.058) (0.060) (0.070) (0.074) (0.034) (0.036)

-0.102 0.144 -0.412* -0.212 -0.244** -0.132

(0.138) (0.138) (0.175) (0.194) (0.083) (0.086)

0.054 0.123 -0.254* -0.086 -0.152** -0.084*

(0.088) (0.063) (0.109) (0.086) (0.053) (0.039)

0.052 -0.078* 0.116 0.011 0.121*** -0.008

(0.056) (0.037) (0.066) (0.030) (0.033) (0.018)

-0.144*** -0.214*** -0.009 -0.007 -0.062* -0.079***

(0.040) (0.030) (0.055) (0.044) (0.025) (0.020)

0.096* -0.026 0.045 0.018 0.134*** 0.053

(0.048) (0.047) (0.056) (0.057) (0.029) (0.029)

-0.237*** -0.152** 0.209*** 0.209*** -0.073* -0.021

(0.056) (0.047) (0.053) (0.047) (0.032) (0.027)

-0.003 0.063 0.048 0.023 -0.022 -0.020

(0.071) (0.046) (0.078) (0.049) (0.043) (0.027)

0.133 0.009 0.569*** 0.324* 0.235*** 0.150*

(0.103) (0.104) (0.142) (0.158) (0.062) (0.067)

0.004 0.167*** -0.045 -0.025 -0.097*** 0.036

(0.046) (0.049) (0.051) (0.053) (0.027) (0.028)

0.058 0.082 -0.049 0.019 -0.070 -0.036

(0.064) (0.045) (0.081) (0.060) (0.038) (0.028)

-0.029 0.139 -0.390*** -0.21 -0.136* -0.006

(0.095) (0.108) (0.114) (0.143) (0.055) (0.067)

3.283*** 3.280*** 3.023*** 3.030*** 4.413*** 4.415***

-0.111 -0.107 -0.076 -0.08 -0.067 -0.063

-420.465 -399.967 -377.264 -390.686 -497.613 -505.083

868.93 827.934 782.528 809.372 1 023.227 1 038.166

904.536 863.541 818.134 844.978 1 058.833 1 073.772

0.144 0.210 0.310 0.223 0.110 0.147

0.695 0.699 0.549 0.489 0.672 0.591

Grnd.Forage Opp.Forage Low.Disp



maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

Dependent 

variables

Chapter 2 Appendix A5 continued

Independent variables

TLS ULS

0.011 0.049

(0.051) (0.055)

0.190 0.040

(0.129) (0.135)

0.059 -0.010

(0.082) (0.064)

-0.089 -0.044

(0.049) (0.030)

0.081*
0.072*

(0.040) (0.034)

-0.026 0.013

(0.044) (0.043)

-0.169***
-0.061

(0.046) (0.040)

0.228***
0.110**

(0.060) (0.037)

-0.034 0.119

(0.103) (0.107)

0.040 0.149***

(0.035) (0.041)

0.024 -0.042

(0.059) (0.045)

0.183 -0.063

(0.094) (0.104)

3.560***
3.563***

-0.096 -0.104

-495.84 -499.214

1 019.679 1 026.428

1 055.285 1 062.034

0.208 0.187

0.572 0.639

Partial.Disp



Dependent 

variables

TLS ULS TLS ULS TLS ULS

maxH -0.090 -0.124 -0.508 -0.469 0.239 0.152

(0.110) (0.120) (0.317) (0.356) (0.206) (0.253)

meanH 0.540 0.445 1.202 1.341 0.093 -0.459

(0.284) (0.294) (0.807) (0.837) (0.611) (0.629)

skewH 0.248 0.119 0.488 0.784 -0.244 -0.009

(0.177) (0.133) (0.520) (0.426) (0.375) (0.298)

vci_2m 0.098 -0.073 0.084 -0.506* -0.492* -0.142

(0.111) (0.064) (0.303) (0.218) (0.207) (0.136)

vci_5m -0.051 -0.094 0.021 -0.029 0.670** 0.197

(0.093) (0.071) (0.254) (0.180) (0.220) (0.185)

vci_15m -0.240** -0.255** -0.031 -0.083 -0.074 0.059

(0.090) (0.089) (0.233) (0.241) (0.185) (0.173)

canopy_roughness -0.054 -0.036 0.639** 0.653*** -0.293 0.047

(0.098) (0.085) (0.234) (0.183) (0.206) (0.158)

tvolume -0.167 0.014 -0.471 0.030 0.591** 0.332*

(0.133) (0.087) (0.347) (0.206) (0.191) (0.147)

meanH_L3 -0.117 -0.036 -0.638 -0.949 -0.432 0.326

(0.228) (0.229) (0.622) (0.662) (0.472) (0.473)

vci_L1 -0.027 0.169 -0.195 0.651** 0.303* 0.113

(0.092) (0.095) (0.232) (0.214) (0.127) (0.155)

vci_L2 0.058 0.049 -0.123 0.021 -0.557* -0.195

(0.126) (0.091) (0.327) (0.218) (0.248) (0.184)

height_cv 0.219 0.187 0.607 0.460 0.418 -0.380

(0.197) (0.221) (0.526) (0.570) (0.397) (0.439)

Intercept 1.856
***

1.860
***

-0.369 -0.415
*

0.300
*

0.295

(0.138) (0.137) (0.210) (0.188) (0.133) (0.174)

Log Likelihood -255.100 -254.925 -123.470 -117.020 -156.353 -166.995

Akaike Inf. Crit. 538.201 537.851 274.940 262.039 340.706 361.989

Bayesian Inf. Crit. 573.807 573.457 310.546 297.645 376.312 397.595

Marginal R2 0.105 0.120 0.085 0.249 0.378 0.150

Conditional R2 0.748 0.756 0.195 0.313 0.396 0.354

Independent variables

Chapter 2 Appendix A6. Model summary of the relationship between LiDAR 

derived vegetation structural metrics (independent variables) and abundance 

of individual species  (dependent variables).

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Australian_Magpie Australian_Raven Black_faced_Cuckoo_shrike



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS TLS ULS

0.244 0.056 -0.037 0.159 -0.074 -0.256 0.127 -0.223

(0.441) (0.494) (0.529) (0.521) (0.135) (0.158) (0.484) (0.531)

1.205 0.618 -4.002* -1.829 0.141 0.961* 1.750 4.180

(1.264) (1.310) (1.631) (1.520) (0.356) (0.423) (2.031) (2.635)

0.105 0.139 -1.137 -1.291 0.420 0.481* 0.444 2.141

(0.692) (0.587) (0.809) (0.717) (0.222) (0.200) (1.158) (1.251)

-0.500 0.185 0.923 0.743* 0.237 0.214* -2.616** -2.029

(0.334) (0.240) (0.497) (0.372) (0.146) (0.095) (0.860) (1.077)

0.577 0.036 1.131 -0.433 0.013 -0.015 -0.516 -0.697

(0.447) (0.382) (0.936) (0.450) (0.146) (0.153) (0.535) (0.633)

0.366 0.534 2.730*** 1.062* 0.234 -0.083 -0.154 0.160

(0.323) (0.335) (0.601) (0.493) (0.129) (0.125) (0.686) (1.029)

0.472 0.618* -1.502** -0.931* -0.384** -0.223 0.875 -0.225

(0.347) (0.279) (0.485) (0.449) (0.141) (0.118) (0.464) (0.570)

1.004* 0.416 1.004 -0.355 0.474** 0.034 0.481 0.641

(0.451) (0.291) (0.787) (0.363) (0.172) (0.106) (0.654) (0.625)

-1.237 -0.377 2.861 1.186 0.090 -0.231 -2.990 -3.059

(1.173) (1.238) (1.750) (1.557) (0.292) (0.346) (1.793) (2.243)

0.298 0.037 -0.417 -0.416 -0.130 -0.227* 2.006** 1.606

(0.197) (0.293) (0.365) (0.454) (0.090) (0.114) (0.645) (0.851)

-1.072 -0.709 0.248 1.260* 0.308 0.457** 1.216 1.543

(0.566) (0.417) (1.375) (0.542) (0.191) (0.144) (0.864) (0.814)

0.476 -0.062 -3.671** -0.796 -0.396 0.156 2.989* 1.873

(0.830) (0.952) (1.265) (1.158) (0.275) (0.319) (1.301) (1.812)

-1.924
**

-1.947
*

-3.985
**

-3.707
*

0.66 0.623 -3.084
***

-3.770
**

(0.692) (0.766) (1.323) (1.783) (0.365) (0.403) (0.651) (1.191)

-109.254 -112.360 -78.480 -92.429 -241.967 -245.903 -42.615 -47.579

246.508 252.720 184.959 212.857 511.933 519.806 113.230 123.158

282.114 288.326 220.565 248.464 547.539 555.412 148.836 158.764

0.299 0.343 0.372 0.405 0.189 0.131 0.532 0.415

0.582 0.512 0.823 0.594 0.767 0.759 0.616 0.735

Chapter 2 Appendix A6 continued

Independent variables

Note: *p < 0.05, **p < 0.01, ***p < 0.001

Buff_rumped_Thornbill

Brown_headed_Hone

yeater Brown_Thornbill Common_Bronzewing



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.341* 0.285* -0.200 -0.513 0.349*** 0.496***

(0.146) (0.143) (0.263) (0.323) (0.086) (0.091)

-1.840*** -0.901** -1.022 -0.414 -1.030*** -0.887***

(0.327) (0.331) (0.718) (0.780) (0.227) (0.229)

-0.856*** -0.353* -0.295 -0.097 -0.747*** -0.559***

(0.221) (0.163) (0.438) (0.358) (0.143) (0.108)

-0.094 0.075 0.535* 0.099 0.093 -0.055

(0.129) (0.099) (0.271) (0.104) (0.088) (0.048)

-0.287*** -0.341*** -0.465* -0.120 -0.138* 0.031

(0.080) (0.057) (0.192) (0.160) (0.064) (0.050)

0.768*** 0.218 0.133 0.026 0.169* 0.135

(0.153) (0.130) (0.226) (0.237) (0.074) (0.074)

-0.062 -0.339** 0.360 0.461** -0.035 -0.004

(0.139) (0.122) (0.189) (0.175) (0.079) (0.064)

-0.110 -0.008 -0.251 0.114 -0.064 -0.081

(0.187) (0.139) (0.349) (0.187) (0.101) (0.063)

1.108*** 0.592* 1.376* 0.995 0.677*** 0.401*

(0.217) (0.241) (0.577) (0.623) (0.172) (0.177)

-0.021 -0.039 -0.136 0.102 -0.023 0.151*

(0.111) (0.131) (0.221) (0.196) (0.070) (0.066)

-0.210 0.122 0.501 0.033 -0.159 -0.296***

(0.151) (0.120) (0.336) (0.272) (0.098) (0.068)

-0.904*** -0.203 -0.883* -0.501 -0.516*** -0.452**

(0.203) (0.270) (0.410) (0.531) (0.147) (0.171)

0.361 0.354 -0.072 -0.071 2.344
***

2.338
***

(0.419) (0.442) (0.228) (0.253) (0.079) (0.067)

-231.988 -229.368 -154.924 -158.974 -285.809 -276.577

491.977 486.736 337.848 345.949 599.618 581.155

527.583 522.342 373.454 381.555 635.224 616.761

0.313 0.195 0.206 0.097 0.182 0.316

0.769 0.774 0.428 0.442 0.488 0.527

Independent variables

Chapter 2 Appendix A6 continued

Common_Starling Crested_Pigeon Crimson_Rosella



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.191 0.359*** 0.302* 0.285 -0.283 -0.281

(0.099) (0.106) (0.143) (0.161) (0.799) (0.527)

-0.387 -0.877*** -0.370 -0.276 0.956

(0.249) (0.255) (0.370) (0.391) (1.487)

-0.424** -0.448*** -0.279 -0.168

(0.158) (0.124) (0.238) (0.178)

0.009 -0.081 0.123 0.006

(0.098) (0.050) (0.147) (0.067)

0.150* 0.005 0.104 0.055 0.979

(0.070) (0.055) (0.103) (0.085) (0.970)

0.371*** 0.310** 0.143 -0.040 0.653 1.007

(0.102) (0.101) (0.124) (0.129) (0.723) (0.608)

-0.169 -0.120 0.164 0.153 1.215** 0.579

(0.100) (0.078) (0.129) (0.108) (0.471) 0.389 

-0.369** -0.282*** -0.482** -0.240*

(0.130) (0.084) (0.176) (0.113)

0.265 0.608** 0.143 0.024 -2.680 -1.567

(0.175) (0.190) (0.268) (0.301) (1.893) (0.853)

-0.045 0.175* 0.089 0.253* -0.708* -1.014**

(0.087) (0.089) (0.119) (0.115) (0.342) (0.389)

-0.232 -0.059 -0.411** -0.286* -0.876 0.123

(0.119) (0.090) (0.157) (0.115) (1.233) (0.515)

-0.157 -0.428* -0.258 -0.048 -0.422

(0.155) (0.201) (0.223) (0.294) (1.640)

1.980
***

1.978
***

1.188
***

1.186
***

-3.638*** -0.2806***

(0.146) (0.139) (0.123) (0.131) (0.799) (0.527)

-293.257 -293.902 -221.612 -222.414 -33.200 -33.200

614.513 615.803 471.224 472.828 88.300 88.300

650.120 651.409 506.830 508.434 116.300 116.300

0.324 0.351 0.269 0.228 0.674 0.565

0.748 0.732 0.452 0.431 0.694 0.590

Independent variables

Chapter 2 Appendix A6 continued

Eastern_Rosella Galah Golden_Whistler



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS TLS ULS

0.107 0.093 -0.203 -0.251 0.588 0.995 -0.180 0.571

(0.364) (0.425) (0.161) (0.178) (0.612) (0.732) (0.597) (0.581)

1.720 1.059 0.024 0.103 0.019 -0.267 -2.052 -0.684

(1.290) (1.212) (0.387) (0.387) (1.372) (1.519) (1.756) (2.035)

-0.059 -0.159 0.351 0.388 -0.464 -0.673 0.138 -0.921

(0.709) (0.604) (0.247) (0.220) (0.815) (1.628) (1.329) (0.893)

1.365*** 0.178 0.072 0.181 -0.354 -1.080 0.994* -0.841

(0.389) (0.142) (0.162) (0.121) (1.131) (1.441) (0.482) (0.499)

0.255 0.044 0.114 0.030 0.405 0.592 0.214 -0.312

(0.283) (0.201) (0.140) (0.148) (0.685) (0.737) (0.731) (0.307)

0.277 0.016 0.529** 0.384* -0.040 0.385 0.650 -0.100

(0.360) (0.384) (0.167) (0.166) (0.667) (1.200) (0.562) (0.414)

-0.321 -0.204 -0.275 -0.110 -1.177 -0.956 -0.651 -0.170

(0.337) (0.257) (0.145) (0.118) (0.930) (0.933) (0.510) (0.308)

-0.876* -0.092 0.411* 0.066 0.138 -0.391 0.214 0.506

(0.432) (0.248) (0.205) (0.130) (1.101) (0.825) (0.583) (0.404)

-1.477 -1.397 0.153 0.366 -0.229 0.001 2.236 -0.327

(1.092) (0.978) (0.306) (0.317) (1.279) (1.330) (1.747) (1.678)

-1.022** 0.124 -0.106 -0.317* 1.249 1.874 0.514 -0.591

(0.357) (0.301) (0.111) (0.147) (0.814) (1.513) (0.600) (0.350)

-0.580 0.089 0.188 0.274 -0.442 -0.866 2.762 0.922

(0.492) (0.310) (0.217) (0.173) (0.915) (0.848) (1.830) (0.540)

0.774 1.156 -0.345 -0.332 0.470 -0.666 -3.084 0.393

(0.854) (0.805) (0.315) (0.343) (1.615) (1.820) (1.595) (1.183)

-1.278
**

-1.110
*

0.662
*

0.670
*

-4.936
*

-6.475 -3.116
**

-1.921
***

(0.493) (0.455) (0.286) (0.289) (2.307) (3.957) (1.174) (0.415)

-113.669 -118.213 -234.062 -236.202 -45.893 -46.280 -66.879 -68.335

255.337 264.426 496.124 500.404 119.787 120.561 161.758 164.671

290.943 300.032 531.731 536.010 155.393 156.167 197.365 200.277

0.155 0.106 0.095 0.089 0.087 0.103 0.484 0.364

0.670 0.577 0.639 0.665 0.757 0.832 0.484 0.364

Chapter 2 Appendix A6 continued

Independent variables

Grey_Butcherbird Grey_Fantail Grey_Shrike_thrush Laughing_Kookaburra



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS TLS ULS

-0.116 -0.153 2.850** 1.792** 0.075 -0.232 0.072 -0.247

(0.353) (0.430) (1.068) (0.682) (0.272) (0.329) (0.490) (0.611)

1.769 1.390 6.250 6.606 -0.528 0.974 0.977 1.646

(0.916) (1.090) (3.296) (4.416) (0.785) (0.798) (1.907) (1.762)

0.600 0.430 0.299 0.702 -0.419 0.196 -1.594 -1.333

(0.507) (0.520) (1.139) (1.034) (0.565) (0.395) (1.333) (1.345)

-0.040 0.345 0.407 -1.321 -0.267 -0.088 -1.759 -1.284

(0.316) (0.186) (0.992) (0.683) (0.252) (0.152) (1.099) (1.129)

0.370 1.129* 2.636*** 0.595 -0.397 0.029 -0.128 0.062

(0.340) (0.501) (0.790) (0.504) (0.234) (0.160) (0.630) (0.443)

-0.380 -0.094 -2.267* -1.110 0.392 0.357 -1.042 -0.621

(0.295) (0.292) (0.893) (0.812) (0.217) (0.219) (0.708) (0.942)

-0.074 0.368 -1.118 0.931* -0.943** -0.701** 0.667 0.408

(0.273) (0.212) (1.205) (0.468) (0.322) (0.268) (0.580) (0.553)

1.110*** 0.362 -0.986 -1.037* 0.348 0.038 -0.232 -1.830

(0.331) (0.219) (1.152) (0.501) (0.272) (0.207) (1.042) (1.270)

-1.419 -1.344 -7.150* -6.615 0.264 -0.476 -1.751 -1.828

(0.833) (0.997) (3.436) (4.082) (0.598) (0.631) (1.521) (1.250)

-0.079 -0.319 0.789 2.577** 0.449* 0.534* 0.667 -0.422

(0.190) (0.253) (0.907) (0.813) (0.199) (0.242) (0.687) (0.726)

-0.488 -0.730* -2.261* -1.404** 0.696 -0.044 -0.446 0.475

(0.383) (0.357) (1.080) (0.515) (0.375) (0.247) (0.880) (0.685)

1.165 0.855 5.064 3.556 0.437 0.340 2.789* 2.908*

(0.710) (0.835) (2.720) (3.254) (0.547) (0.529) (1.333) (1.476)

-1.045
***

-1.159
***

-5.644
*

-4.206
**

-0.619 -0.591 -3.347
***

-4.259
*

(0.295) (0.310) (2.216) (1.498) (0.409) (0.407) (0.921) (1.654)

-102.792 -101.055 -55.479 -46.525 -141.357 -142.172 -45.837 -46.860

233.583 230.110 138.957 121.051 310.714 312.344 119.674 121.720

269.189 265.716 174.563 156.657 346.320 347.950 155.280 157.327

0.391 0.451 0.314 0.581 0.186 0.167 0.289 0.398

0.391 0.505 0.716 0.743 0.740 0.722 0.515 0.741

Chapter 2 Appendix A6 continued

Independent variables

Leaden_Flycatcher Little_Corella Magpie_lark Masked_Lapwing



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS TLS ULS

0.022 0.020 -1.032 -0.368 0.145 0.125 -0.586*** -0.754***

(0.265) (0.304) (0.733) (0.812) (0.211) (0.243) (0.119) (0.150)

1.205 1.486 -4.290* 1.367 -0.740 -0.589 0.350 -0.232

(0.872) (0.935) (2.184) (2.715) (0.597) (0.619) (0.327) (0.413)

0.850 0.604 -3.798 0.498 -0.922* -0.654* 0.066 -0.081

(0.483) (0.431) (2.044) (1.270) (0.390) (0.275) (0.205) (0.193)

0.269 -0.373 -0.433 0.044 0.151 0.285** -0.027

(0.297) (0.242) (0.551) (0.212) (0.102) (0.103) (0.042)

0.617 0.359 -0.199 0.114 0.209 0.003 0.055

(0.317) (0.265) (0.306) (0.181) (0.131) (0.076) (0.064)

0.017 -0.256 2.778* 0.959 0.010 0.112 -0.073 -0.031

(0.255) (0.259) (1.160) (1.159) (0.169) (0.167) (0.102) (0.101)

-0.512 -0.362 1.671* 0.837 -0.009 0.072 0.482*** 0.398***

(0.292) (0.231) (0.822) (0.504) (0.232) (0.195) (0.082) (0.072)

-0.211 0.030 -4.234*** -2.130** 0.036 -0.238 -0.301* -0.168

(0.340) (0.230) (1.251) (0.756) (0.236) (0.162) (0.134) (0.090)

-0.722 -0.912 2.843* -0.982 0.431 0.183 0.286 0.772*

(0.785) (0.795) (1.347) (2.289) (0.510) (0.504) (0.259) (0.342)

-0.199 -0.054 -0.337 1.146 0.023 -0.075 -0.140 -0.096

(0.202) (0.201) (0.367) (0.607) (0.152) (0.170) (0.100) (0.100)

0.901 0.720* 1.978* 0.775 -0.369 -0.429* -0.551*** -0.439***

(0.516) (0.332) (0.811) (0.659) (0.262) (0.174) (0.147) (0.115)

-0.020 0.449 0.470 -0.220 -0.200 -0.264 -0.352

(0.647) (0.722) (1.772) (0.429) (0.439) (0.165) (0.255)

-0.534
*

-0.465 -5.663 -4.018
***

0.208 0.2 0.691 0.661

(0.263) (0.257) (1.608) (1.010) (0.222) (0.216) (0.605) (0.633)

-126.882 -127.686 -29.200 -33.000 -157.465 -154.465 -281.398 -285.794

281.763 283.373 80.400 94.001 342.930 336.930 590.796 599.588

317.369 318.979 108.400 129.607 378.536 372.537 626.402 635.194

0.436 0.319 0.817 0.609 0.083 0.100 0.042 0.049

0.621 0.573 0.824 0.672 0.600 0.609 0.921 0.916

Chapter 2 Appendix A6 continued

Independent variables

Mistletoebird Nankeen_Kestrel Noisy_Friarbird Noisy_Miner



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

-1.209 -1.602* 0.041 -0.042 0.430 0.433

(0.640) (0.697) (0.466) (0.466) (0.484) (0.599)

3.485 3.307 -0.807 0.748 -1.949 -1.654

(1.843) (2.020) (1.174) (1.170) (1.548) (1.436)

1.946 0.850 -0.193 0.036 -1.538 -0.811

(1.069) (0.862) (0.724) (0.549) (1.024) (0.737)

-0.372 0.181 -0.011 -0.145 -0.534 0.157

(0.528) (0.347) (0.439) (0.320) (0.431) (0.279)

0.047 -0.439 -0.328 -0.194 1.191 1.363*

(0.512) (0.396) (0.296) (0.237) (0.672) (0.681)

-0.437 -0.441 0.207 -0.541 -0.264 -0.129

(0.470) (0.453) (0.400) (0.321) (0.432) (0.392)

-0.266 0.199 -0.008 -0.296 0.142 0.189

(0.515) (0.418) (0.443) (0.342) (0.463) (0.335)

1.020 1.102* -0.408 -0.367 0.834 0.290

(0.630) (0.485) (0.576) (0.341) (0.426) (0.287)

-2.814 -2.182 0.242 -0.437 1.366 1.206

(1.590) (1.488) (0.794) (0.845) (1.213) (1.093)

0.971** -0.166 0.090 0.032 -0.021 -0.025

(0.362) (0.398) (0.350) (0.269) (0.269) (0.333)

0.479 0.111 0.590 0.566 -0.933 -0.851

(0.664) (0.446) (0.474) (0.334) (0.749) (0.502)

1.436 2.166 0.344 1.051 -0.947 -1.207

(1.006) (1.185) (0.622) (0.761) (0.967) (0.997)

-2.558
***

-2.323
***

-1.522
***

-1.353
***

-1.996
***

-1.937
***

(0.777) (0.698) (0.373) (0.321) (0.462) (0.438)

-68.613 -68.868 -72.542 -73.281 -73.269 -73.814

165.225 165.735 173.084 174.563 174.537 175.628

200.831 201.341 208.690 210.169 210.143 211.234

0.309 0.324 0.250 0.291 0.442 0.307

0.694 0.577 0.510 0.449 0.560 0.488

Chapter 2 Appendix A6 continued

Olive_backed_Oriole Pallid_Cuckoo Pied_Currawong

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.533 0.850* -0.035 -0.145 0.014 -0.172

(0.465) (0.428) (0.351) (0.462) (0.227) (0.237)

-1.281 -1.571 1.965 3.563** 0.437 0.126

(1.339) (1.021) (1.078) (1.368) (0.485) (0.545)

-1.586 -1.072* 0.535 0.845 0.510 0.535

(0.832) (0.529) (0.772) (0.660) (0.307) (0.290)

-0.526 -0.944* 0.232 -0.554** 0.169 0.208

(0.404) (0.381) (0.297) (0.209) (0.214) (0.142)

-0.483 -0.119 0.677* 0.838* 0.315 -0.097

(0.276) (0.180) (0.322) (0.346) (0.217) (0.202)

1.374** 1.006* -0.188 -0.579* -0.038 0.018

(0.503) (0.441) (0.260) (0.262) (0.175) (0.182)

-0.558 -0.006 -0.358 0.393 -0.202 0.012

(0.389) (0.273) (0.364) (0.252) (0.183) (0.144)

0.101 -0.116 -0.060 -0.024 0.502 0.198

(0.495) (0.309) (0.286) (0.217) (0.259) (0.163)

-0.479 0.179 -1.008 -2.627** -0.202 0.246

(1.025) (0.841) (0.815) (1.009) (0.419) (0.451)

0.089 0.804* -0.110 0.386 -0.244 -0.431**

(0.327) (0.313) (0.170) (0.273) (0.142) (0.167)

1.168* -0.037 -0.670 -0.569 -0.307 0.158

(0.544) (0.329) (0.388) (0.297) (0.249) (0.201)

1.823 -0.112 0.562 1.808* 0.025 -0.079

(1.073) (0.857) (0.658) (0.801) (0.374) (0.445)

-1.683
**

-1.244
**

-0.926
*

-1.124
*

-0.031 -0.046

(0.614) (0.453) (0.415) (0.470) (0.330) (0.365)

-108.826 -108.849 -128.382 -122.011 -167.184 -173.749

245.652 245.698 284.763 272.022 362.368 375.498

281.258 281.304 320.369 307.628 397.974 411.104

0.339 0.349 0.113 0.223 0.139 0.067

0.339 0.349 0.611 0.730 0.693 0.712

Chapter 2 Appendix A6 continued

Red_WattlebirdRed_rumped_Parrot Rufous_Whistler

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

-1.536 -2.539** -0.173 -0.390 -1.618** -0.924

(0.784) (0.887) (0.725) (0.706) (0.568) (0.652)

8.132*** 7.809** -3.112 -3.571 4.309* 2.479

(2.193) (2.505) (2.270) (2.339) (1.795) (1.747)

4.580** 4.188** -2.001 -2.038 4.001*** 3.141**

(1.487) (1.381) (1.338) (1.115) (1.078) (1.084)

-0.839 -0.050 0.243 0.020 -0.396 0.000

(0.490) (0.300) (0.677) (0.283) (0.399) (0.261)

0.727 0.331 1.813* -0.608* 0.840 1.450*

(0.815) (0.533) (0.838) (0.303) (0.579) (0.703)

0.068 0.179 1.891** 0.821 0.698 1.154*

(0.552) (0.428) (0.667) (0.637) (0.439) (0.509)

1.119* 0.672 0.663 0.488 0.883* 0.739*

(0.512) (0.401) (0.653) (0.445) (0.409) (0.333)

-0.197 0.389 0.221 0.762 0.706 0.344

(0.594) (0.357) (0.805) (0.419) (0.424) (0.283)

-8.784*** -6.706** 2.117 2.986 -3.213 -2.136

(2.265) (2.118) (1.927) (2.062) (1.740) (1.743)

0.789* 0.744* -0.115 0.412 0.165 0.258

(0.324) (0.346) (0.336) (0.611) (0.231) (0.342)

0.685 0.728 -1.284 1.344 1.045 1.074

(0.981) (0.533) (1.057) (0.813) (1.063) (0.876)

3.324** 2.185* -3.280* -2.773 -0.713 -2.477

(1.164) (1.109) (1.414) (1.600) (1.270) (1.697)

-3.183
***

-2.566
***

-3.308
**

-3.123
**

-2.722
***

-3.203
***

(0.830) (0.600) (1.073) (1.046) (0.626) (0.773)

-64.285 -68.809 -83.346 -86.216 -70.451 -72.207

156.570 165.618 194.693 200.431 168.903 172.413

192.177 201.224 230.299 236.037 204.509 208.019

0.735 0.762 0.127 0.200 0.772 0.800

0.786 0.762 0.133 0.209 0.803 0.821

Chapter 2 Appendix A6 continued

Sacred_Kingfisher Silvereye Spotted_Pardalote

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.112 0.187 -0.468* -0.815** -0.170 0.049

(0.118) (0.122) (0.220) (0.268) (0.174) (0.189)

-0.175 -0.175 1.686** 0.314 0.895 -0.176

(0.304) (0.318) (0.627) (0.571) (0.504) (0.479)

-0.035 -0.082 1.361*** 0.943** 0.137 -0.210

(0.189) (0.145) (0.405) (0.316) (0.294) (0.234)

-0.216* -0.019 0.084 0.583*** -0.040 -0.225*

(0.102) (0.061) (0.180) (0.129) (0.184) (0.098)

-0.139 0.085 1.356*** -0.413 0.061 -0.007

(0.078) (0.064) (0.304) (0.269) (0.131) (0.107)

0.086 0.144 0.560** 0.162 -0.039 -0.007

(0.100) (0.098) (0.175) (0.183) (0.179) (0.176)

-0.287** -0.178* -0.276 -0.363* 0.059 0.168

(0.100) (0.081) (0.208) (0.172) (0.139) (0.116)

0.298* 0.050 0.490* 0.603*** 0.051 0.305*

(0.122) (0.078) (0.228) (0.147) (0.211) (0.130)

0.120 0.187 -1.268** 0.550 -0.425 0.469

(0.227) (0.248) (0.454) (0.422) (0.375) (0.355)

0.150 0.233** -0.215* -1.015*** -0.007 0.564***

(0.078) (0.084) (0.107) (0.190) (0.144) (0.133)

0.295* -0.094 -0.803** 1.095*** 0.311 0.041

(0.131) (0.091) (0.303) (0.233) (0.224) (0.153)

0.049 -0.367 0.454 -0.002 0.891* -0.163

(0.191) (0.228) (0.373) (0.412) (0.368) (0.373)

1.913
***

1.920
***

-0.372 -0.323 0.773
***

0.768
***

(0.102) (0.095) (0.514) (0.492) (0.161) (0.140)

-284.684 -281.591 -200.843 -200.226 -222.368 -215.093

597.368 591.181 429.686 428.452 472.737 458.185

632.974 626.787 465.292 464.058 508.343 493.791

0.207 0.250 0.359 0.354 0.276 0.376

0.388 0.411 0.680 0.698 0.276 0.376

Chapter 2 Appendix A6 continued

Striated_Pardalote Striated_Thornbill Sulphur_crested_Cockatoo

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

1.210** 1.092* -5.454 -4.311* -0.060 -0.286

(0.415) (0.489) (3.332) (1.782) (0.137) (0.154)

-1.795 1.053 19.735* 17.259* 1.110** 1.103**

(1.235) (1.413) (9.043) (6.793) (0.354) (0.350)

-1.247 -0.093 17.375* 7.280** 0.500* 0.386*

(0.766) (0.671) (7.469) (2.772) (0.217) (0.180)

0.000 -0.517 0.343* 0.652 0.347* 0.032

(0.324) (0.276) (0.918) (0.403) (0.155) (0.083)

0.496 -0.248 -2.783 -0.603 0.022 -0.061

(0.389) (0.250) (1.802) (0.593) (0.112) (0.110)

0.374 -0.326 10.859* 0.478 -0.161 -0.116

(0.411) (0.338) (5.065) (1.023) (0.123) (0.121)

-0.565 -0.914** 0.574 0.183 -0.396** -0.092

(0.366) (0.310) (1.295) (0.592) (0.147) (0.117)

-0.131 -0.338 -0.596 0.525 -0.038 -0.140

(0.490) (0.349) (1.526) (0.490) (0.183) (0.116)

0.577 -1.579 -15.032* -11.284* -0.655* -0.482

(0.921) (1.186) (6.704) (5.233) (0.276) (0.265)

-0.237 0.998* 0.554 -0.114 -0.340** -0.198

(0.350) (0.429) (0.727) (0.477) (0.106) (0.112)

-0.284 0.380 2.452 1.194 0.286 0.242

(0.506) (0.304) (2.450) (1.147) (0.172) (0.137)

-0.293 1.433 2.030 5.477 0.963*** 0.943***

(0.721) (0.978) (2.904) (3.217) (0.285) (0.270)

-1.632
**

-1.998
**

-14.1039* -4.711
**

1.210
***

1.244
***

(0.610) (0.750) (5.538) (1.684) (0.217) (0.220)

-117.643 -115.437 -61.100 -61.580 -302.015 -308.123

263.286 258.875 150.100 151.161 632.031 644.246

298.892 294.481 185.700 186.767 667.637 679.852

0.169 0.186 0.704 0.834 0.124 0.094

0.508 0.603 0.704 0.834 0.443 0.399

Chapter 2 Appendix A6 continued

Superb_Parrot Varied_Sittella Weebill

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.275 0.140 -0.025 -0.023 -0.349 -1.044**

(0.291) (0.326) (1.176) (1.276) (0.294) (0.368)

-0.495 -0.594 4.863 5.170* 3.112*** 3.885***

(0.771) (0.747) (2.556) (2.499) (0.854) (1.059)

0.103 0.089 2.578 1.341 2.378*** 2.632***

(0.458) (0.430) (1.639) (1.958) (0.569) (0.568)

0.045 -0.450 0.930 -1.093 -0.048 0.209

(0.364) (0.310) (1.670) (1.580) (0.254) (0.167)

0.073 -0.105 1.237 2.382 0.660 0.062

(0.305) (0.322) (1.662) (2.069) (0.346) (0.218)

0.467 0.489 0.522 1.099 0.414 0.473

(0.321) (0.329) (1.204) (1.831) (0.269) (0.295)

-1.079*** -0.557* -0.457 -0.029 -0.166 -0.080

(0.326) (0.251) (1.365) (0.944) (0.265) (0.221)

0.816 0.239 0.065 1.143 0.312 0.196

(0.426) (0.271) (1.681) (1.442) (0.278) (0.186)

-0.357 0.558 -4.312 -4.237 -3.137*** -3.244***

(0.628) (0.600) (2.363) (2.259) (0.762) (0.898)

0.236 0.315 -1.244 0.174 0.050 -0.429*

(0.229) (0.255) (1.217) (0.965) (0.157) (0.196)

0.906* 0.702* -0.478 -0.898 0.369 1.181***

(0.460) (0.353) (1.867) (1.495) (0.450) (0.340)

1.180 0.147 3.674 4.840 0.943 1.217

(0.654) (0.675) (2.409) (2.739) (0.512) (0.632)

-1.023
*

-0.967 -7.723
**

-10.267
**

-0.531 -0.728
*

(0.471) (0.494) (2.861) (3.430) (0.324) (0.357)

-126.940 -131.884 -31.538 -32.722 -139.763 -138.238

281.879 291.769 91.077 93.444 307.526 304.476

317.486 327.375 126.683 129.050 343.132 340.082

0.301 0.155 0.097 0.163 0.506 0.574

0.500 0.543 0.820 0.888 0.732 0.781

Chapter 2 Appendix A6 continued

White_eared_HoneyeaterWestern_Gerygone White_throated_Gerygone

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

-2.020** -0.673 -0.704*** -0.977*** 0.402 -0.074

(0.769) (0.669) (0.192) (0.162) (0.646) (0.513)

2.477 5.038* 1.876*** 2.150*** -2.525 -0.314

(1.543) (2.008) (0.454) (0.498) (1.950) (1.489)

3.990*** 2.715** 1.485*** 1.291*** -1.130 0.517

(1.148) (0.962) (0.247) (0.208) (1.125) (0.754)

0.592 -0.152 0.793*** -0.096 -2.615** -1.657*

(0.631) (0.235) (0.158) (0.099) (0.875) (0.717)

-1.365* 0.868 0.020 0.003 0.056 -0.182

(0.545) (0.600) (0.156) (0.122) (0.537) (0.303)

1.077* 0.800 0.137 0.252* -0.615 -1.026

(0.546) (0.479) (0.136) (0.122) (0.647) (0.545)

0.301 1.200*** -0.424** 0.447*** 1.339* 0.438

(0.549) (0.314) (0.150) (0.116) (0.562) (0.396)

1.518* 0.040 0.413 0.132 0.640 0.451

(0.658) (0.244) (0.214) (0.112) (0.801) (0.534)

-2.111 -6.399** -1.200** -1.438*** 2.337 1.486

(1.705) (2.022) (0.407) (0.433) (1.618) (1.225)

0.519 -0.913** 0.162 0.263 2.236** 1.465**

(0.386) (0.347) (0.112) (0.139) (0.795) (0.519)

2.390* -0.408 0.103 -0.262* -0.346 0.549

(1.167) (0.458) (0.199) (0.124) (0.856) (0.470)

-1.663 1.712 0.439 0.638 -1.175 -1.551

(1.219) (1.207) (0.316) (0.331) (1.487) (1.402)

-3.579
***

-3.234
***

0.48 0.578 -3.729
**

-2.913
***

(0.868) (0.589) (0.385) (0.378) (1.372) (0.823)

-52.653 -54.619 -307.917 -331.057 -62.554 -72.476

133.306 137.239 643.833 690.113 153.108 172.951

168.912 172.845 679.439 725.720 188.714 208.557

0.739 0.777 0.272 0.196 0.271 0.242

0.803 0.777 0.504 0.487 0.637 0.269

Chapter 2 Appendix A6 continued

White_throated_Treecreepe

r White_winged_Chough White_winged_Triller

Independent variables



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS TLS ULS

0.400 0.358 -0.819 0.489 0.631 0.662

(0.376) (0.363) (0.648) (0.591) (0.564) (0.551)

-0.008 1.248 4.807* 0.099 -7.654*** -1.926

(0.948) (0.869) (2.066) (1.658) (1.897) (1.607)

-0.090 0.551 3.181* 1.466 -3.631*** 0.482

(0.607) (0.443) (1.313) (0.826) (1.046) (0.725)

-1.754*** -0.520 0.840 -0.995* -2.620*** -1.476***

(0.487) (0.330) (0.547) (0.399) (0.688) (0.434)

-0.374 -0.225 1.507* 1.922** -1.571** -0.743**

(0.280) (0.187) (0.600) (0.716) (0.533) (0.263)

-0.448 -0.412 1.244* 1.883** 1.856** 0.688

(0.336) (0.330) (0.577) (0.674) (0.632) (0.493)

0.652 0.368 0.260 0.263 0.316 0.075

(0.344) (0.249) (0.503) (0.377) (0.531) (0.404)

0.140 -0.637* -0.849 -0.134 1.606* 0.727*

(0.439) (0.300) (0.779) (0.393) (0.659) (0.348)

0.025 -0.612 -3.608* -0.531 4.625*** 1.485

(0.762) (0.686) (1.535) (1.422) (1.279) (1.314)

1.204** 0.412 -0.446 0.798* 1.389*** 1.385**

(0.401) (0.308) (0.356) (0.363) (0.416) (0.425)

-0.014 -0.014 -0.573 -0.738 1.463 0.663

(0.426) (0.285) (0.780) (0.543) (0.805) (0.450)

0.718 0.583 1.294 -1.473 -2.309* -2.297*

(0.683) (0.702) (1.012) (1.391) (1.069) (1.059)

-1.675
***

-1.338*** -2.665
***

-2.796
***

-2.937
**

-2.199
**

(0.391) (0.313) (0.808) (0.777) (1.017) (0.681)

-88.446 -101.011 -84.209 -79.745 -116.755 -107.056

204.892 230.021 196.417 187.490 261.510 242.113

240.498 265.627 232.024 223.096 297.117 277.719

0.273 0.224 0.181 0.322 0.045 0.131

0.273 0.224 0.222 0.322 0.045 0.131

Yellow_faced_HoneyeaterWillie_Wagtail Wood_Duck

Independent variables

Chapter 2 Appendix A6 continued



Dependent 

variables

maxH

meanH

skewH

vci_2m

vci_5m

vci_15m

canopy_roughness

tvolume

meanH_L3

vci_L1

vci_L2

height_cv

Intercept

Log Likelihood

Akaike Inf. Crit.

Bayesian Inf. Crit.

Marginal R2

Conditional R2

TLS ULS TLS ULS

0.725*** 0.631*** 1.674 -0.882

(0.148) (0.161) (1.525) (1.090)

-0.532 -0.282 6.741 5.595

(0.555) (0.453) (3.986) (3.349)

0.381 0.592* 3.648 1.038

(0.318) (0.249) (2.662) (1.724)

-0.083 -0.207 4.088** -0.757

(0.210) (0.133) (1.404) (0.677)

0.114 -0.152 2.247 -0.007

(0.192) (0.178) (1.467) (0.724)

-0.008 0.028 -1.036 -2.150**

(0.183) (0.156) (0.969) (0.737)

-1.068*** -0.907*** -5.081*** -1.914**

(0.200) (0.175) (1.461) (0.728)

0.438 0.368* -3.995* -0.645

(0.246) (0.168) (1.758) (0.734)

-0.125 0.092 -4.897 -2.894

(0.384) (0.300) (3.294) (2.888)

0.057 0.386* -2.558* 0.081

(0.143) (0.153) (1.081) (1.094)

0.284 0.472** 0.326 1.835*

(0.218) (0.167) (1.315) (0.932)

0.054 -0.158 2.362 3.147

(0.371) (0.333) (1.583) (1.753)

0.200 0.175 -13.287
***

-9.507
***

(0.388) (0.391) (3.365) (2.791)

-221.600 -222.728 -52.623 -56.752

471.201 473.457 133.246 141.505

506.807 509.063 168.852 177.111

0.245 0.153 0.109 0.068

0.553 0.609 0.945 0.905

Yellow_rumped_Thornbill Yellow_Thornbill

Independent variables

Chapter 2 Appendix A6 continued
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Chapter 3. Appendix 1. Pearson’s correlation indexes between the surface topographic variables 

derived from the (a) Terrestrial laser scanner (TLS) and an unoccupied aerial vehicle laser scanner 

(ULS), (b) a TLS and fused laser scanner (Fusion), (c) Fusion and ULS. Digital surface model (DSM), 

topographic position index (TPI), topographic ruggedness index (TRI). 

 

Chapter 3. Appendix 2. Boxplots show the distribution of measured coarse woody debris (CWD) 

data. Upper, mid and lower horizontal lines of the box indicate 1th, median and 3rd quartiles. Red dots 

inside a boxplot are mean values. Whiskers extend to the highest and lowest extreme of observations, 

and the dots on the whiskers are outliers. 
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Chapter 3. Appendix 3. Pearson's pairwise correlations between the variables calculated from (a) 

Terrestrial laser scanner (TLS), (b) an unoccupied aerial vehicle laser scanner (ULS) and (c) a fused 

TLS and ULS (Fusion) data. Digital surface model (DSM), topographic position index (TPI), 

topographic ruggedness index (TRI). 

 

Chapter 3. Appendix 4. The digital surface model (DSM) samples from (a) Terrestrial laser scanner 

(TLS) (b) an unoccupied aerial vehicle laser scanner (ULS), (c) a TLS and fused laser scanner (Fusion). 
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Appendices Chapter 4 

 

 



maxH_t meanH_t stdH_t skewH_t kurH_t p_05_t p_10_t p_25_t p_50_t

maxH_t 1.000 0.574 0.761 0.008 -0.046 0.104 0.150 0.264 0.410

meanH_t 0.574 1.000 0.654 -0.694 -0.554 0.672 0.721 0.838 0.951

stdH_t 0.761 0.654 1.000 -0.118 -0.352 0.004 0.045 0.173 0.412

skewH_t 0.008 -0.694 -0.118 1.000 0.828 -0.604 -0.638 -0.723 -0.791

kurH_t -0.046 -0.554 -0.352 0.828 1.000 -0.258 -0.285 -0.376 -0.529

p_05_t 0.104 0.672 0.004 -0.604 -0.258 1.000 0.992 0.924 0.752

p_10_t 0.150 0.721 0.045 -0.638 -0.285 0.992 1.000 0.958 0.801

p_25_t 0.264 0.838 0.173 -0.723 -0.376 0.924 0.958 1.000 0.918

p_50_t 0.410 0.951 0.412 -0.791 -0.529 0.752 0.801 0.918 1.000

p_75_t 0.588 0.966 0.732 -0.686 -0.618 0.509 0.562 0.700 0.886

p_90_t 0.710 0.830 0.946 -0.360 -0.501 0.292 0.333 0.447 0.631

p_99_t 0.873 0.652 0.896 0.017 -0.087 0.138 0.179 0.291 0.449

vci_2m_t 0.202 -0.022 0.146 -0.023 -0.090 -0.343 -0.314 -0.190 -0.032

vci_5m_t 0.216 0.185 0.153 -0.246 -0.328 -0.085 -0.028 0.113 0.197

vci_10m_t 0.244 0.537 0.233 -0.738 -0.738 0.314 0.344 0.436 0.560

vci_15m_t 0.655 0.601 0.739 -0.169 -0.335 0.179 0.206 0.288 0.443

vci_20m_t 0.816 0.565 0.696 -0.056 -0.105 0.164 0.201 0.299 0.422

cov_t 0.324 0.483 0.109 -0.513 -0.321 0.365 0.414 0.527 0.557

canopy_shannon_t 0.725 0.885 0.832 -0.538 -0.617 0.333 0.386 0.542 0.760

canopy_roughness_t 0.593 0.481 0.418 -0.265 -0.243 0.083 0.138 0.302 0.464

tvolume_t 0.260 0.456 0.050 -0.495 -0.262 0.387 0.430 0.540 0.556

vlayer_L1_t -0.080 -0.143 -0.073 0.029 0.014 -0.207 -0.198 -0.156 -0.109

vlayer_L2_t 0.128 0.256 -0.152 -0.427 -0.194 0.313 0.344 0.416 0.386

vlayer_L3_t 0.446 0.738 0.368 -0.529 -0.326 0.525 0.575 0.703 0.763

meanH_L1_t 0.230 0.120 0.279 -0.038 -0.092 -0.207 -0.192 -0.092 0.073

meanH_L2_t 0.109 0.626 -0.083 -0.761 -0.441 0.820 0.844 0.870 0.767

meanH_L3_t 0.692 0.430 0.874 0.242 0.047 -0.046 -0.022 0.046 0.182

sdH_L1_t 0.295 0.094 0.304 0.077 0.002 -0.212 -0.194 -0.116 0.014

sdH_L2_t 0.332 0.622 0.397 -0.729 -0.723 0.187 0.236 0.411 0.647

sdH_L3_t 0.863 0.493 0.829 0.202 0.100 0.026 0.058 0.146 0.280

roughness_L1_t 0.139 0.059 0.065 -0.171 -0.148 -0.212 -0.180 -0.047 0.108

roughness_L2_t 0.239 0.402 0.008 -0.524 -0.346 0.308 0.345 0.462 0.511

roughness_L3_t 0.695 0.435 0.760 0.124 -0.017 -0.099 -0.057 0.057 0.248

vci_L1_t 0.297 0.128 0.325 0.030 -0.041 -0.202 -0.184 -0.096 0.054

vci_L2_t 0.266 0.487 0.189 -0.651 -0.649 0.238 0.281 0.411 0.546

vci_L3_t 0.828 0.587 0.905 0.079 -0.079 0.068 0.101 0.199 0.366

height_cv_t 0.289 -0.315 0.498 0.671 0.234 -0.698 -0.708 -0.700 -0.564

cwd_volume_t -0.051 0.039 -0.016 -0.144 -0.100 -0.058 -0.050 0.016 0.095

numberOfCWD_t -0.059 0.025 -0.068 -0.154 -0.086 -0.018 -0.011 0.040 0.091

Chapter 4 Appendix B1. Pearson correlation matrix of TLS derived vegetation 

structural variables
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Chapter 4 Appendix B1 continued

p_75_t p_90_t p_99_t vci_2m_t vci_5m_t vci_10m_t vci_15m_t vci_20m_t

0.588 0.710 0.873 0.202 0.216 0.244 0.655 0.816

0.966 0.830 0.652 -0.022 0.185 0.537 0.601 0.565

0.732 0.946 0.896 0.146 0.153 0.233 0.739 0.696

-0.686 -0.360 0.017 -0.023 -0.246 -0.738 -0.169 -0.056

-0.618 -0.501 -0.087 -0.090 -0.328 -0.738 -0.335 -0.105

0.509 0.292 0.138 -0.343 -0.085 0.314 0.179 0.164

0.562 0.333 0.179 -0.314 -0.028 0.344 0.206 0.201

0.700 0.447 0.291 -0.190 0.113 0.436 0.288 0.299

0.886 0.631 0.449 -0.032 0.197 0.560 0.443 0.422

1.000 0.857 0.658 0.058 0.188 0.592 0.619 0.556

0.857 1.000 0.844 0.047 0.170 0.337 0.742 0.670

0.658 0.844 1.000 0.113 0.154 0.178 0.718 0.803

0.058 0.047 0.113 1.000 0.185 0.226 0.113 0.221

0.188 0.170 0.154 0.185 1.000 0.301 0.274 0.243

0.592 0.337 0.178 0.226 0.301 1.000 0.316 0.237

0.619 0.742 0.718 0.113 0.274 0.316 1.000 0.692

0.556 0.670 0.803 0.221 0.243 0.237 0.692 1.000

0.439 0.233 0.205 0.576 0.423 0.521 0.195 0.336

0.923 0.898 0.787 0.169 0.366 0.626 0.767 0.712

0.499 0.430 0.448 0.548 0.397 0.369 0.445 0.536

0.392 0.187 0.146 0.460 0.360 0.410 0.123 0.262

-0.133 -0.106 -0.094 0.130 0.134 -0.025 -0.160 -0.143

0.190 -0.030 -0.033 0.487 0.357 0.407 -0.042 0.167

0.683 0.520 0.425 0.289 0.247 0.359 0.415 0.421

0.207 0.190 0.238 0.625 0.030 0.176 0.252 0.298

0.490 0.184 0.059 -0.127 0.312 0.612 0.120 0.185

0.445 0.786 0.864 -0.002 0.074 -0.172 0.645 0.664

0.177 0.206 0.270 0.573 -0.042 0.081 0.285 0.372

0.692 0.462 0.312 0.363 0.359 0.863 0.439 0.377

0.505 0.727 0.955 0.112 0.102 0.082 0.640 0.801

0.114 0.024 0.046 0.834 0.294 0.273 0.067 0.195

0.368 0.126 0.071 0.432 0.412 0.518 0.137 0.293

0.507 0.660 0.737 0.143 0.093 0.032 0.611 0.626

0.214 0.231 0.282 0.608 -0.022 0.113 0.306 0.380

0.502 0.285 0.188 0.185 0.681 0.805 0.365 0.314

0.606 0.837 0.946 0.121 0.170 0.105 0.824 0.840

-0.203 0.242 0.388 0.180 -0.083 -0.363 0.283 0.237

0.049 -0.011 -0.029 0.230 0.131 0.155 -0.064 -0.115

0.020 -0.056 -0.035 0.186 0.129 0.183 -0.122 -0.151



maxH_t

meanH_t

stdH_t

skewH_t

kurH_t

p_05_t

p_10_t

p_25_t

p_50_t

p_75_t

p_90_t

p_99_t

vci_2m_t

vci_5m_t

vci_10m_t

vci_15m_t

vci_20m_t

cov_t

canopy_shannon_t

canopy_roughness_t

tvolume_t

vlayer_L1_t

vlayer_L2_t

vlayer_L3_t

meanH_L1_t

meanH_L2_t

meanH_L3_t

sdH_L1_t

sdH_L2_t

sdH_L3_t

roughness_L1_t

roughness_L2_t

roughness_L3_t

vci_L1_t

vci_L2_t

vci_L3_t

height_cv_t

cwd_volume_t

numberOfCWD_t

Chapter 4 Appendix B1 continued

cov_t canopy_shannon_t canopy_roughness_t tvolume_t vlayer_L1_t

0.324 0.725 0.593 0.260 -0.080

0.483 0.885 0.481 0.456 -0.143

0.109 0.832 0.418 0.050 -0.073

-0.513 -0.538 -0.265 -0.495 0.029

-0.321 -0.617 -0.243 -0.262 0.014

0.365 0.333 0.083 0.387 -0.207

0.414 0.386 0.138 0.430 -0.198

0.527 0.542 0.302 0.540 -0.156

0.557 0.760 0.464 0.556 -0.109

0.439 0.923 0.499 0.392 -0.133

0.233 0.898 0.430 0.187 -0.106

0.205 0.787 0.448 0.146 -0.094

0.576 0.169 0.548 0.460 0.130

0.423 0.366 0.397 0.360 0.134

0.521 0.626 0.369 0.410 -0.025

0.195 0.767 0.445 0.123 -0.160

0.336 0.712 0.536 0.262 -0.143

1.000 0.448 0.631 0.890 -0.016

0.448 1.000 0.578 0.358 -0.095

0.631 0.578 1.000 0.650 0.155

0.890 0.358 0.650 1.000 0.264

-0.016 -0.095 0.155 0.264 1.000

0.884 0.181 0.527 0.933 0.147

0.765 0.601 0.655 0.821 -0.051

0.320 0.265 0.307 0.067 -0.463

0.620 0.417 0.243 0.595 -0.072

-0.103 0.561 0.255 -0.126 -0.063

0.254 0.232 0.298 -0.016 -0.578

0.491 0.736 0.505 0.421 0.056

0.103 0.655 0.393 0.042 -0.084

0.634 0.188 0.632 0.624 0.292

0.797 0.378 0.677 0.843 0.060

0.022 0.588 0.438 -0.010 -0.099

0.283 0.270 0.336 0.017 -0.555

0.518 0.627 0.463 0.423 0.080

0.114 0.758 0.441 0.048 -0.123

-0.438 0.006 -0.044 -0.470 0.041

0.154 0.061 0.280 0.303 0.633

0.185 0.033 0.161 0.319 0.637
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Chapter 4 Appendix B1 continued

vlayer_L2_t vlayer_L3_t meanH_L1_t meanH_L2_t meanH_L3_t sdH_L1_t

0.128 0.446 0.230 0.109 0.692 0.295

0.256 0.738 0.120 0.626 0.430 0.094

-0.152 0.368 0.279 -0.083 0.874 0.304

-0.427 -0.529 -0.038 -0.761 0.242 0.077

-0.194 -0.326 -0.092 -0.441 0.047 0.002

0.313 0.525 -0.207 0.820 -0.046 -0.212

0.344 0.575 -0.192 0.844 -0.022 -0.194

0.416 0.703 -0.092 0.870 0.046 -0.116

0.386 0.763 0.073 0.767 0.182 0.014

0.190 0.683 0.207 0.490 0.445 0.177

-0.030 0.520 0.190 0.184 0.786 0.206

-0.033 0.425 0.238 0.059 0.864 0.270

0.487 0.289 0.625 -0.127 -0.002 0.573

0.357 0.247 0.030 0.312 0.074 -0.042

0.407 0.359 0.176 0.612 -0.172 0.081

-0.042 0.415 0.252 0.120 0.645 0.285

0.167 0.421 0.298 0.185 0.664 0.372

0.884 0.765 0.320 0.620 -0.103 0.254

0.181 0.601 0.265 0.417 0.561 0.232

0.527 0.655 0.307 0.243 0.255 0.298

0.933 0.821 0.067 0.595 -0.126 -0.016

0.147 -0.051 -0.463 -0.072 -0.063 -0.578

1.000 0.623 0.130 0.594 -0.312 0.057

0.623 1.000 0.171 0.534 0.193 0.137

0.130 0.171 1.000 -0.137 0.149 0.852

0.594 0.534 -0.137 1.000 -0.260 -0.213

-0.312 0.193 0.149 -0.260 1.000 0.232

0.057 0.137 0.852 -0.213 0.232 1.000

0.347 0.435 0.327 0.486 0.012 0.200

-0.104 0.284 0.224 -0.065 0.877 0.292

0.642 0.370 0.495 0.059 -0.103 0.329

0.853 0.668 0.147 0.597 -0.215 0.115

-0.200 0.310 0.288 -0.206 0.747 0.330

0.081 0.168 0.916 -0.191 0.232 0.987

0.422 0.321 0.095 0.647 -0.098 -0.016

-0.136 0.362 0.266 -0.051 0.920 0.333

-0.507 -0.359 0.201 -0.821 0.636 0.274

0.201 0.122 -0.035 0.076 -0.094 -0.342

0.242 0.097 -0.086 0.147 -0.151 -0.427
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Chapter 4 Appendix B1 continued

sdH_L2_t sdH_L3_t roughness_L1_t roughness_L2_t roughness_L3_t vci_L1_t

0.332 0.863 0.139 0.239 0.695 0.297

0.622 0.493 0.059 0.402 0.435 0.128

0.397 0.829 0.065 0.008 0.760 0.325

-0.729 0.202 -0.171 -0.524 0.124 0.030

-0.723 0.100 -0.148 -0.346 -0.017 -0.041

0.187 0.026 -0.212 0.308 -0.099 -0.202

0.236 0.058 -0.180 0.345 -0.057 -0.184

0.411 0.146 -0.047 0.462 0.057 -0.096

0.647 0.280 0.108 0.511 0.248 0.054

0.692 0.505 0.114 0.368 0.507 0.214

0.462 0.727 0.024 0.126 0.660 0.231

0.312 0.955 0.046 0.071 0.737 0.282

0.363 0.112 0.834 0.432 0.143 0.608

0.359 0.102 0.294 0.412 0.093 -0.022

0.863 0.082 0.273 0.518 0.032 0.113

0.439 0.640 0.067 0.137 0.611 0.306

0.377 0.801 0.195 0.293 0.626 0.380

0.491 0.103 0.634 0.797 0.022 0.283

0.736 0.655 0.188 0.378 0.588 0.270

0.505 0.393 0.632 0.677 0.438 0.336

0.421 0.042 0.624 0.843 -0.010 0.017

0.056 -0.084 0.292 0.060 -0.099 -0.555

0.347 -0.104 0.642 0.853 -0.200 0.081

0.435 0.284 0.370 0.668 0.310 0.168

0.327 0.224 0.495 0.147 0.288 0.916

0.486 -0.065 0.059 0.597 -0.206 -0.191

0.012 0.877 -0.103 -0.215 0.747 0.232

0.200 0.292 0.329 0.115 0.330 0.987

1.000 0.187 0.420 0.515 0.175 0.254

0.187 1.000 0.020 -0.015 0.756 0.290

0.420 0.020 1.000 0.570 0.052 0.398

0.515 -0.015 0.570 1.000 -0.021 0.142

0.175 0.756 0.052 -0.021 1.000 0.345

0.254 0.290 0.398 0.142 0.345 1.000

0.815 0.089 0.307 0.579 0.031 0.024

0.269 0.939 0.029 0.010 0.802 0.342

-0.249 0.485 -0.031 -0.482 0.451 0.258

0.226 -0.068 0.456 0.152 -0.005 -0.259

0.210 -0.089 0.394 0.121 -0.117 -0.347
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Chapter 4 Appendix B1 continued

vci_L2_t vci_L3_t height_cv_t cwd_volume_t numberOfCWD_t

0.266 0.828 0.289 -0.051 -0.059

0.487 0.587 -0.315 0.039 0.025

0.189 0.905 0.498 -0.016 -0.068

-0.651 0.079 0.671 -0.144 -0.154

-0.649 -0.079 0.234 -0.100 -0.086

0.238 0.068 -0.698 -0.058 -0.018

0.281 0.101 -0.708 -0.050 -0.011

0.411 0.199 -0.700 0.016 0.040

0.546 0.366 -0.564 0.095 0.091

0.502 0.606 -0.203 0.049 0.020

0.285 0.837 0.242 -0.011 -0.056

0.188 0.946 0.388 -0.029 -0.035

0.185 0.121 0.180 0.230 0.186

0.681 0.170 -0.083 0.131 0.129

0.805 0.105 -0.363 0.155 0.183

0.365 0.824 0.283 -0.064 -0.122

0.314 0.840 0.237 -0.115 -0.151

0.518 0.114 -0.438 0.154 0.185

0.627 0.758 0.006 0.061 0.033

0.463 0.441 -0.044 0.280 0.161

0.423 0.048 -0.470 0.303 0.319

0.080 -0.123 0.041 0.633 0.637

0.422 -0.136 -0.507 0.201 0.242

0.321 0.362 -0.359 0.122 0.097

0.095 0.266 0.201 -0.035 -0.086

0.647 -0.051 -0.821 0.076 0.147

-0.098 0.920 0.636 -0.094 -0.151

-0.016 0.333 0.274 -0.342 -0.427

0.815 0.269 -0.249 0.226 0.210

0.089 0.939 0.485 -0.068 -0.089

0.307 0.029 -0.031 0.456 0.394

0.579 0.010 -0.482 0.152 0.121

0.031 0.802 0.451 -0.005 -0.117

0.024 0.342 0.258 -0.259 -0.347

1.000 0.156 -0.384 0.188 0.202

0.156 1.000 0.488 -0.080 -0.136

-0.384 0.488 1.000 -0.086 -0.139

0.188 -0.080 -0.086 1.000 0.933

0.202 -0.136 -0.139 0.933 1.000



maxH_u meanH_u stdH_u skewH_u kurH_u p_05_u p_10_u p_25_u p_50_u

maxH_u 1.000 0.632 0.771 -0.005 -0.101 0.143 0.175 0.280 0.479

meanH_u 0.632 1.000 0.573 -0.680 -0.418 0.602 0.676 0.820 0.957

stdH_u 0.771 0.573 1.000 -0.010 -0.376 -0.163 -0.105 0.037 0.356

skewH_u -0.005 -0.680 -0.010 1.000 0.637 -0.568 -0.625 -0.736 -0.791

kurH_u -0.101 -0.418 -0.376 0.637 1.000 -0.012 -0.040 -0.151 -0.389

p_05_u 0.143 0.602 -0.163 -0.568 -0.012 1.000 0.983 0.889 0.652

p_10_u 0.175 0.676 -0.105 -0.625 -0.040 0.983 1.000 0.942 0.726

p_25_u 0.280 0.820 0.037 -0.736 -0.151 0.889 0.942 1.000 0.884

p_50_u 0.479 0.957 0.356 -0.791 -0.389 0.652 0.726 0.884 1.000

p_75_u 0.666 0.945 0.715 -0.626 -0.530 0.376 0.453 0.619 0.871

p_90_u 0.749 0.805 0.925 -0.292 -0.468 0.180 0.245 0.378 0.620

p_99_u 0.952 0.650 0.850 0.042 -0.090 0.117 0.158 0.268 0.470

vci_2m_u 0.333 0.015 0.238 0.125 0.010 -0.262 -0.243 -0.172 -0.012

vci_5m_u 0.238 0.053 0.181 -0.003 -0.315 -0.215 -0.210 -0.104 0.049

vci_10m_u 0.276 0.412 0.177 -0.544 -0.662 0.159 0.182 0.282 0.451

vci_15m_u 0.609 0.606 0.650 -0.325 -0.593 0.142 0.185 0.284 0.483

vci_20m_u 0.682 0.480 0.581 0.039 0.021 0.110 0.146 0.227 0.360

cov_u 0.393 0.327 0.077 -0.225 -0.081 0.277 0.263 0.312 0.364

canopy_shannon_u 0.806 0.789 0.829 -0.365 -0.583 0.124 0.183 0.359 0.668

canopy_roughness_u 0.608 0.557 0.395 -0.288 -0.256 0.209 0.240 0.381 0.538

tvolume_u 0.294 0.366 0.009 -0.371 -0.146 0.290 0.299 0.392 0.447

vlayer_L1_u 0.180 0.197 0.021 -0.300 -0.146 0.017 0.034 0.161 0.288

vlayer_L2_u 0.140 0.109 -0.180 -0.224 -0.055 0.200 0.175 0.212 0.204

vlayer_L3_u 0.454 0.665 0.239 -0.471 -0.211 0.468 0.512 0.624 0.694

meanH_L1_u 0.219 -0.110 0.445 0.274 -0.121 -0.566 -0.507 -0.445 -0.237

meanH_L2_u 0.077 0.417 -0.310 -0.576 -0.211 0.762 0.733 0.699 0.537

meanH_L3_u 0.701 0.527 0.927 0.108 -0.164 -0.057 -0.003 0.092 0.295

sdH_L1_u 0.255 -0.007 0.468 0.187 -0.213 -0.487 -0.414 -0.339 -0.135

sdH_L2_u 0.239 0.539 0.244 -0.699 -0.570 0.089 0.181 0.397 0.616

sdH_L3_u 0.897 0.549 0.859 0.150 -0.052 0.003 0.043 0.141 0.352

roughness_L1_u 0.220 -0.022 0.436 0.113 -0.279 -0.548 -0.482 -0.366 -0.117

roughness_L2_u 0.176 0.359 -0.037 -0.465 -0.364 0.270 0.314 0.412 0.444

roughness_L3_u 0.638 0.480 0.827 0.113 -0.176 -0.095 -0.029 0.075 0.281

vci_L1_u 0.262 -0.030 0.478 0.214 -0.200 -0.510 -0.443 -0.374 -0.163

vci_L2_u 0.328 0.341 0.297 -0.377 -0.661 -0.096 -0.059 0.115 0.368

vci_L3_u 0.866 0.668 0.926 -0.037 -0.282 0.041 0.099 0.225 0.468

height_cv_u 0.214 -0.365 0.537 0.693 0.050 -0.759 -0.761 -0.754 -0.574

cwd_volume_u 0.203 0.168 0.323 -0.114 -0.162 -0.287 -0.210 -0.042 0.158

numberOfCWD_u 0.149 0.056 0.263 -0.059 -0.190 -0.383 -0.314 -0.158 0.058

Chapter 4 Appendix B2. Pearson correlation matrix of ULS derived vegetation 

structural variables
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Chapter 4 Appendix B2 continued

p_75_u p_90_u p_99_u vci_2m_u vci_5m_u vci_10m_u vci_15m_u vci_20m_u

0.666 0.749 0.952 0.333 0.238 0.276 0.609 0.682

0.945 0.805 0.650 0.015 0.053 0.412 0.606 0.480

0.715 0.925 0.850 0.238 0.181 0.177 0.650 0.581

-0.626 -0.292 0.042 0.125 -0.003 -0.544 -0.325 0.039

-0.530 -0.468 -0.090 0.010 -0.315 -0.662 -0.593 0.021

0.376 0.180 0.117 -0.262 -0.215 0.159 0.142 0.110

0.453 0.245 0.158 -0.243 -0.210 0.182 0.185 0.146

0.619 0.378 0.268 -0.172 -0.104 0.282 0.284 0.227

0.871 0.620 0.470 -0.012 0.049 0.451 0.483 0.360

1.000 0.861 0.680 0.094 0.097 0.471 0.671 0.483

0.861 1.000 0.823 0.109 0.122 0.244 0.698 0.574

0.680 0.823 1.000 0.294 0.202 0.220 0.617 0.694

0.094 0.109 0.294 1.000 0.190 0.149 0.198 0.221

0.097 0.122 0.202 0.190 1.000 0.298 0.223 0.174

0.471 0.244 0.220 0.149 0.298 1.000 0.608 0.000

0.671 0.698 0.617 0.198 0.223 0.608 1.000 0.329

0.483 0.574 0.694 0.221 0.174 0.000 0.329 1.000

0.288 0.139 0.313 0.637 0.380 0.308 0.262 0.275

0.871 0.872 0.821 0.251 0.351 0.580 0.807 0.587

0.557 0.457 0.514 0.292 0.289 0.398 0.507 0.429

0.307 0.105 0.207 0.321 0.371 0.293 0.238 0.271

0.198 0.022 0.104 0.334 0.241 0.253 0.141 0.200

0.052 -0.127 0.044 0.329 0.382 0.266 0.066 0.150

0.590 0.414 0.405 0.189 0.305 0.248 0.431 0.373

0.082 0.234 0.255 0.536 -0.016 0.084 0.247 0.082

0.221 -0.026 -0.003 -0.133 0.238 0.427 0.101 0.028

0.589 0.887 0.815 0.103 0.074 -0.077 0.508 0.606

0.172 0.300 0.288 0.375 0.124 0.152 0.337 0.159

0.579 0.323 0.211 0.220 0.115 0.739 0.489 0.112

0.612 0.787 0.961 0.281 0.195 0.207 0.586 0.686

0.178 0.250 0.241 0.315 0.179 0.204 0.310 0.171

0.291 0.098 0.129 0.134 0.370 0.530 0.318 0.095

0.543 0.789 0.743 0.122 0.069 0.010 0.488 0.554

0.157 0.297 0.291 0.455 0.107 0.137 0.330 0.159

0.405 0.298 0.291 0.205 0.574 0.778 0.535 0.191

0.736 0.906 0.929 0.243 0.199 0.274 0.762 0.695

-0.175 0.229 0.297 0.227 0.087 -0.255 0.145 0.147

0.246 0.240 0.222 0.380 0.044 0.140 0.257 0.184

0.153 0.152 0.146 0.428 0.083 0.172 0.226 0.167



maxH_u

meanH_u

stdH_u

skewH_u

kurH_u

p_05_u

p_10_u

p_25_u

p_50_u

p_75_u

p_90_u

p_99_u

vci_2m_u

vci_5m_u

vci_10m_u

vci_15m_u

vci_20m_u

cov_u

canopy_shannon_u

canopy_roughness_u

tvolume_u

vlayer_L1_u

vlayer_L2_u

vlayer_L3_u

meanH_L1_u

meanH_L2_u

meanH_L3_u

sdH_L1_u

sdH_L2_u

sdH_L3_u

roughness_L1_u

roughness_L2_u

roughness_L3_u

vci_L1_u

vci_L2_u

vci_L3_u

height_cv_u

cwd_volume_u

numberOfCWD_u

Chapter 4 Appendix B2 continued

cov_u canopy_shannon_u canopy_roughness_u tvolume_u vlayer_L1_u

0.393 0.806 0.608 0.294 0.180

0.327 0.789 0.557 0.366 0.197

0.077 0.829 0.395 0.009 0.021

-0.225 -0.365 -0.288 -0.371 -0.300

-0.081 -0.583 -0.256 -0.146 -0.146

0.277 0.124 0.209 0.290 0.017

0.263 0.183 0.240 0.299 0.034

0.312 0.359 0.381 0.392 0.161

0.364 0.668 0.538 0.447 0.288

0.288 0.871 0.557 0.307 0.198

0.139 0.872 0.457 0.105 0.022

0.313 0.821 0.514 0.207 0.104

0.637 0.251 0.292 0.321 0.334

0.380 0.351 0.289 0.371 0.241

0.308 0.580 0.398 0.293 0.253

0.262 0.807 0.507 0.238 0.141

0.275 0.587 0.429 0.271 0.200

1.000 0.333 0.500 0.792 0.514

0.333 1.000 0.612 0.303 0.216

0.500 0.612 1.000 0.521 0.448

0.792 0.303 0.521 1.000 0.815

0.514 0.216 0.448 0.815 1.000

0.779 0.105 0.339 0.925 0.698

0.695 0.501 0.612 0.852 0.563

-0.002 0.234 -0.077 -0.202 -0.089

0.435 0.171 0.228 0.470 0.218

-0.041 0.667 0.293 -0.109 -0.116

-0.029 0.333 -0.002 -0.134 -0.159

0.254 0.556 0.386 0.368 0.452

0.217 0.782 0.435 0.104 0.042

-0.043 0.339 0.018 0.044 0.159

0.397 0.380 0.306 0.490 0.281

-0.070 0.666 0.299 -0.146 -0.170

0.008 0.321 0.000 -0.143 -0.140

0.274 0.657 0.437 0.288 0.285

0.196 0.882 0.517 0.134 0.072

-0.275 0.093 -0.126 -0.379 -0.195

0.118 0.287 0.322 0.283 0.584

0.103 0.251 0.302 0.296 0.626
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Chapter 4 Appendix B2 continued

vlayer_L2_u vlayer_L3_u meanH_L1_u meanH_L2_u meanH_L3_u sdH_L1_u

0.140 0.454 0.219 0.077 0.701 0.255

0.109 0.665 -0.110 0.417 0.527 -0.007

-0.180 0.239 0.445 -0.310 0.927 0.468

-0.224 -0.471 0.274 -0.576 0.108 0.187

-0.055 -0.211 -0.121 -0.211 -0.164 -0.213

0.200 0.468 -0.566 0.762 -0.057 -0.487

0.175 0.512 -0.507 0.733 -0.003 -0.414

0.212 0.624 -0.445 0.699 0.092 -0.339

0.204 0.694 -0.237 0.537 0.295 -0.135

0.052 0.590 0.082 0.221 0.589 0.172

-0.127 0.414 0.234 -0.026 0.887 0.300

0.044 0.405 0.255 -0.003 0.815 0.288

0.329 0.189 0.536 -0.133 0.103 0.375

0.382 0.305 -0.016 0.238 0.074 0.124

0.266 0.248 0.084 0.427 -0.077 0.152

0.066 0.431 0.247 0.101 0.508 0.337

0.150 0.373 0.082 0.028 0.606 0.159

0.779 0.695 -0.002 0.435 -0.041 -0.029

0.105 0.501 0.234 0.171 0.667 0.333

0.339 0.612 -0.077 0.228 0.293 -0.002

0.925 0.852 -0.202 0.470 -0.109 -0.134

0.698 0.563 -0.089 0.218 -0.116 -0.159

1.000 0.637 -0.184 0.477 -0.294 -0.116

0.637 1.000 -0.221 0.446 0.170 -0.093

-0.184 -0.221 1.000 -0.558 0.341 0.904

0.477 0.446 -0.558 1.000 -0.329 -0.442

-0.294 0.170 0.341 -0.329 1.000 0.363

-0.116 -0.093 0.904 -0.442 0.363 1.000

0.247 0.341 0.125 0.241 0.029 0.168

-0.037 0.285 0.343 -0.109 0.828 0.376

0.039 -0.034 0.804 -0.419 0.280 0.873

0.475 0.461 -0.097 0.583 -0.182 0.047

-0.325 0.149 0.360 -0.283 0.855 0.405

-0.125 -0.116 0.945 -0.475 0.370 0.990

0.252 0.233 0.130 0.328 0.099 0.234

-0.065 0.379 0.334 -0.107 0.883 0.401

-0.349 -0.393 0.608 -0.818 0.536 0.522

0.131 0.193 0.426 -0.262 0.236 0.329

0.183 0.134 0.452 -0.268 0.145 0.366
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Chapter 4 Appendix B2 continued

sdH_L2_u sdH_L3_u roughness_L1_u roughness_L2_u roughness_L3_u vci_L1_u

0.239 0.897 0.220 0.176 0.638 0.262

0.539 0.549 -0.022 0.359 0.480 -0.030

0.244 0.859 0.436 -0.037 0.827 0.478

-0.699 0.150 0.113 -0.465 0.113 0.214

-0.570 -0.052 -0.279 -0.364 -0.176 -0.200

0.089 0.003 -0.548 0.270 -0.095 -0.510

0.181 0.043 -0.482 0.314 -0.029 -0.443

0.397 0.141 -0.366 0.412 0.075 -0.374

0.616 0.352 -0.117 0.444 0.281 -0.163

0.579 0.612 0.178 0.291 0.543 0.157

0.323 0.787 0.250 0.098 0.789 0.297

0.211 0.961 0.241 0.129 0.743 0.291

0.220 0.281 0.315 0.134 0.122 0.455

0.115 0.195 0.179 0.370 0.069 0.107

0.739 0.207 0.204 0.530 0.010 0.137

0.489 0.586 0.310 0.318 0.488 0.330

0.112 0.686 0.171 0.095 0.554 0.159

0.254 0.217 -0.043 0.397 -0.070 0.008

0.556 0.782 0.339 0.380 0.666 0.321

0.386 0.435 0.018 0.306 0.299 0.000

0.368 0.104 0.044 0.490 -0.146 -0.143

0.452 0.042 0.159 0.281 -0.170 -0.140

0.247 -0.037 0.039 0.475 -0.325 -0.125

0.341 0.285 -0.034 0.461 0.149 -0.116

0.125 0.343 0.804 -0.097 0.360 0.945

0.241 -0.109 -0.419 0.583 -0.283 -0.475

0.029 0.828 0.280 -0.182 0.855 0.370

0.168 0.376 0.873 0.047 0.405 0.990

1.000 0.171 0.265 0.502 0.080 0.150

0.171 1.000 0.314 0.044 0.750 0.381

0.265 0.314 1.000 0.128 0.298 0.860

0.502 0.044 0.128 1.000 0.025 0.000

0.080 0.750 0.298 0.025 1.000 0.403

0.150 0.381 0.860 0.000 0.403 1.000

0.664 0.267 0.295 0.579 0.185 0.209

0.291 0.935 0.354 0.101 0.817 0.401

-0.277 0.409 0.489 -0.446 0.461 0.558

0.406 0.218 0.538 0.126 0.228 0.353

0.408 0.158 0.564 0.123 0.172 0.389
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Chapter 4 Appendix B2 continued

vci_L2_u vci_L3_u height_cv_u cwd_volume_u numberOfCWD_u

0.328 0.866 0.214 0.203 0.149

0.341 0.668 -0.365 0.168 0.056

0.297 0.926 0.537 0.323 0.263

-0.377 -0.037 0.693 -0.114 -0.059

-0.661 -0.282 0.050 -0.162 -0.190

-0.096 0.041 -0.759 -0.287 -0.383

-0.059 0.099 -0.761 -0.210 -0.314

0.115 0.225 -0.754 -0.042 -0.158

0.368 0.468 -0.574 0.158 0.058

0.405 0.736 -0.175 0.246 0.153

0.298 0.906 0.229 0.240 0.152

0.291 0.929 0.297 0.222 0.146

0.205 0.243 0.227 0.380 0.428

0.574 0.199 0.087 0.044 0.083

0.778 0.274 -0.255 0.140 0.172

0.535 0.762 0.145 0.257 0.226

0.191 0.695 0.147 0.184 0.167

0.274 0.196 -0.275 0.118 0.103

0.657 0.882 0.093 0.287 0.251

0.437 0.517 -0.126 0.322 0.302

0.288 0.134 -0.379 0.283 0.296

0.285 0.072 -0.195 0.584 0.626

0.252 -0.065 -0.349 0.131 0.183

0.233 0.379 -0.393 0.193 0.134

0.130 0.334 0.608 0.426 0.452

0.328 -0.107 -0.818 -0.262 -0.268

0.099 0.883 0.536 0.236 0.145

0.234 0.401 0.522 0.329 0.366

0.664 0.291 -0.277 0.406 0.408

0.267 0.935 0.409 0.218 0.158

0.295 0.354 0.489 0.538 0.564

0.579 0.101 -0.446 0.126 0.123

0.185 0.817 0.461 0.228 0.172

0.209 0.401 0.558 0.353 0.389

1.000 0.355 -0.086 0.221 0.270

0.355 1.000 0.380 0.288 0.222

-0.086 0.380 1.000 0.207 0.237

0.221 0.288 0.207 1.000 0.929

0.270 0.222 0.237 0.929 1.000



maxH_m meanH_m stdH_m skewH_m kurH_m p_05_m p_10_m p_25_m

maxH_m 1.000 0.445 0.577 -0.014 -0.047 0.085 0.116 0.222

meanH_m 0.445 1.000 0.652 -0.691 -0.546 0.674 0.720 0.837

stdH_m 0.577 0.652 1.000 -0.115 -0.347 0.002 0.041 0.169

skewH_m -0.014 -0.691 -0.115 1.000 0.826 -0.606 -0.636 -0.720

kurH_m -0.047 -0.546 -0.347 0.826 1.000 -0.255 -0.279 -0.368

p_05_m 0.085 0.674 0.002 -0.606 -0.255 1.000 0.993 0.928

p_10_m 0.116 0.720 0.041 -0.636 -0.279 0.993 1.000 0.959

p_25_m 0.222 0.837 0.169 -0.720 -0.368 0.928 0.959 1.000

p_50_m 0.332 0.950 0.407 -0.788 -0.521 0.756 0.801 0.918

p_75_m 0.428 0.966 0.731 -0.682 -0.610 0.511 0.560 0.698

p_95_m 0.572 0.760 0.963 -0.218 -0.402 0.216 0.253 0.362

p_99_m 0.680 0.651 0.895 0.023 -0.076 0.137 0.175 0.288

vci_2m_m 0.222 -0.038 0.228 0.059 -0.004 -0.451 -0.416 -0.279

vci_5m_m 0.226 0.193 0.149 -0.250 -0.323 -0.054 -0.008 0.128

vci_10m_m 0.181 0.537 0.229 -0.737 -0.730 0.318 0.345 0.436

vci_15m_m 0.497 0.602 0.738 -0.171 -0.332 0.181 0.206 0.288

vci_20m_m 0.526 0.439 0.582 0.082 0.070 0.101 0.135 0.216

cov_m 0.299 0.485 0.104 -0.515 -0.318 0.379 0.420 0.529

canopy_shannon_m 0.561 0.885 0.831 -0.535 -0.608 0.335 0.384 0.539

canopy_roughness_m 0.445 0.468 0.402 -0.254 -0.227 0.077 0.130 0.296

tvolume_m 0.277 0.443 0.035 -0.507 -0.272 0.384 0.418 0.526

vlayer_1_m -0.058 -0.192 -0.120 0.042 0.049 -0.236 -0.235 -0.196

vlayer_2_m 0.183 0.171 -0.200 -0.380 -0.175 0.255 0.276 0.336

vlayer_3_m 0.355 0.749 0.346 -0.566 -0.350 0.569 0.610 0.729

meanH_L1_m 0.174 0.057 0.289 -0.013 -0.110 -0.304 -0.276 -0.179

meanH_L2_m 0.143 0.622 -0.090 -0.756 -0.431 0.826 0.844 0.868

meanH_L3_m 0.530 0.429 0.874 0.246 0.055 -0.051 -0.025 0.043

sdH_L1_m 0.216 0.091 0.295 -0.007 -0.092 -0.266 -0.231 -0.135

sdH_L2_m 0.295 0.624 0.394 -0.730 -0.715 0.194 0.241 0.414

sdH_L3_m 0.667 0.489 0.826 0.212 0.116 0.023 0.053 0.140

roughness_L1_m 0.149 0.010 0.056 -0.122 -0.123 -0.250 -0.220 -0.103

roughness_L2_m 0.229 0.399 0.021 -0.498 -0.328 0.301 0.332 0.450

roughness_L3_m 0.406 0.382 0.718 0.160 0.010 -0.131 -0.093 0.016

vci_L1_m 0.194 0.109 0.296 -0.058 -0.117 -0.265 -0.231 -0.121

vci_L2_m 0.230 0.484 0.183 -0.645 -0.635 0.243 0.280 0.409

vci_L3_m 0.393 0.533 0.860 0.105 -0.069 0.053 0.078 0.154

height_cv_m 0.209 -0.312 0.503 0.667 0.229 -0.703 -0.709 -0.700

cwd_volume_m 0.151 0.113 0.038 -0.153 -0.106 0.038 0.047 0.088

numberOfCWD_m 0.054 0.029 -0.079 -0.148 -0.090 0.043 0.051 0.071

Chapter 4 Appendix B3. Pearson correlation matrix of TLS derived vegetation 

structural variables
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p_50_m p_75_m p_95_m p_99_m vci_2m_m vci_5m_m vci_10m_m

0.332 0.428 0.572 0.680 0.222 0.226 0.181

0.950 0.966 0.760 0.651 -0.038 0.193 0.537

0.407 0.731 0.963 0.895 0.228 0.149 0.229

-0.788 -0.682 -0.218 0.023 0.059 -0.250 -0.737

-0.521 -0.610 -0.402 -0.076 -0.004 -0.323 -0.730

0.756 0.511 0.216 0.137 -0.451 -0.054 0.318

0.801 0.560 0.253 0.175 -0.416 -0.008 0.345

0.918 0.698 0.362 0.288 -0.279 0.128 0.436

1.000 0.884 0.539 0.446 -0.075 0.206 0.562

0.884 1.000 0.782 0.657 0.081 0.191 0.591

0.539 0.782 1.000 0.895 0.076 0.158 0.258

0.446 0.657 0.895 1.000 0.173 0.156 0.175

-0.075 0.081 0.076 0.173 1.000 0.175 0.139

0.206 0.191 0.158 0.156 0.175 1.000 0.315

0.562 0.591 0.258 0.175 0.139 0.315 1.000

0.444 0.621 0.766 0.716 0.159 0.274 0.323

0.312 0.429 0.585 0.704 0.289 0.155 -0.005

0.560 0.440 0.162 0.200 0.444 0.423 0.519

0.759 0.924 0.866 0.786 0.175 0.369 0.626

0.456 0.485 0.393 0.434 0.549 0.407 0.357

0.545 0.383 0.093 0.132 0.355 0.373 0.426

-0.144 -0.173 -0.178 -0.163 0.130 0.021 -0.076

0.299 0.113 -0.160 -0.073 0.388 0.401 0.416

0.778 0.689 0.442 0.412 0.183 0.257 0.391

-0.016 0.165 0.176 0.228 0.698 0.291 0.188

0.766 0.486 0.094 0.054 -0.262 0.329 0.613

0.178 0.445 0.853 0.865 0.115 0.074 -0.174

0.026 0.184 0.199 0.243 0.731 0.217 0.171

0.650 0.693 0.392 0.308 0.330 0.359 0.864

0.273 0.502 0.799 0.954 0.198 0.102 0.074

0.048 0.071 -0.033 0.031 0.795 0.257 0.256

0.504 0.365 0.069 0.078 0.342 0.418 0.482

0.195 0.461 0.669 0.678 0.264 0.072 -0.029

0.051 0.209 0.188 0.245 0.714 0.294 0.221

0.545 0.499 0.225 0.184 0.127 0.690 0.811

0.310 0.561 0.860 0.874 0.157 0.118 0.061

-0.564 -0.199 0.355 0.391 0.291 -0.091 -0.364

0.142 0.114 0.035 0.048 0.156 0.070 0.137

0.086 0.004 -0.076 -0.036 0.130 0.109 0.142
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Chapter 4 Appendix B3 continued

vci_15m_m vci_20m_m cov_m canopy_shannon_m canopy_roughness_m

0.497 0.526 0.299 0.561 0.445

0.602 0.439 0.485 0.885 0.468

0.738 0.582 0.104 0.831 0.402

-0.171 0.082 -0.515 -0.535 -0.254

-0.332 0.070 -0.318 -0.608 -0.227

0.181 0.101 0.379 0.335 0.077

0.206 0.135 0.420 0.384 0.130

0.288 0.216 0.529 0.539 0.296

0.444 0.312 0.560 0.759 0.456

0.621 0.429 0.440 0.924 0.485

0.766 0.585 0.162 0.866 0.393

0.716 0.704 0.200 0.786 0.434

0.159 0.289 0.444 0.175 0.549

0.274 0.155 0.423 0.369 0.407

0.323 -0.005 0.519 0.626 0.357

1.000 0.423 0.192 0.768 0.430

0.423 1.000 0.289 0.533 0.442

0.192 0.289 1.000 0.445 0.629

0.768 0.533 0.445 1.000 0.562

0.430 0.442 0.629 0.562 1.000

0.115 0.192 0.877 0.351 0.576

-0.190 -0.160 -0.174 -0.168 -0.015

-0.084 0.095 0.875 0.133 0.460

0.408 0.341 0.795 0.604 0.596

0.193 0.240 0.255 0.262 0.396

0.118 0.053 0.621 0.412 0.236

0.642 0.619 -0.107 0.560 0.245

0.264 0.340 0.396 0.275 0.453

0.441 0.157 0.484 0.734 0.488

0.634 0.711 0.093 0.649 0.376

0.028 0.157 0.549 0.149 0.622

0.167 0.210 0.786 0.379 0.687

0.563 0.505 -0.053 0.529 0.428

0.217 0.260 0.330 0.293 0.443

0.365 0.119 0.514 0.624 0.454

0.810 0.638 0.013 0.694 0.336

0.283 0.216 -0.443 0.009 -0.048

-0.014 -0.010 0.037 0.112 0.169

-0.129 -0.070 0.137 0.015 0.148
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Chapter 4 Appendix B3 continued

tvolume_m vlayer_1_m vlayer_2_m vlayer_3_m meanH_L1_m meanH_L2_m

0.277 -0.058 0.183 0.355 0.174 0.143

0.443 -0.192 0.171 0.749 0.057 0.622

0.035 -0.120 -0.200 0.346 0.289 -0.090

-0.507 0.042 -0.380 -0.566 -0.013 -0.756

-0.272 0.049 -0.175 -0.350 -0.110 -0.431

0.384 -0.236 0.255 0.569 -0.304 0.826

0.418 -0.235 0.276 0.610 -0.276 0.844

0.526 -0.196 0.336 0.729 -0.179 0.868

0.545 -0.144 0.299 0.778 -0.016 0.766

0.383 -0.173 0.113 0.689 0.165 0.486

0.093 -0.178 -0.160 0.442 0.176 0.094

0.132 -0.163 -0.073 0.412 0.228 0.054

0.355 0.130 0.388 0.183 0.698 -0.262

0.373 0.021 0.401 0.257 0.291 0.329

0.426 -0.076 0.416 0.391 0.188 0.613

0.115 -0.190 -0.084 0.408 0.193 0.118

0.192 -0.160 0.095 0.341 0.240 0.053

0.877 -0.174 0.875 0.795 0.255 0.621

0.351 -0.168 0.133 0.604 0.262 0.412

0.576 -0.015 0.460 0.596 0.396 0.236

1.000 0.221 0.879 0.816 0.111 0.599

0.221 1.000 0.025 -0.131 -0.014 -0.139

0.879 0.025 1.000 0.559 0.187 0.569

0.816 -0.131 0.559 1.000 0.015 0.582

0.111 -0.014 0.187 0.015 1.000 -0.134

0.599 -0.139 0.569 0.582 -0.134 1.000

-0.146 -0.095 -0.351 0.155 0.183 -0.265

0.099 -0.405 0.240 0.139 0.706 -0.144

0.440 0.059 0.324 0.448 0.282 0.484

0.018 -0.141 -0.134 0.253 0.242 -0.071

0.573 0.296 0.609 0.267 0.573 0.004

0.778 -0.035 0.758 0.663 0.104 0.566

-0.129 -0.145 -0.316 0.175 0.321 -0.258

0.154 -0.089 0.231 0.089 0.969 -0.091

0.436 -0.003 0.447 0.339 0.232 0.645

-0.076 -0.183 -0.286 0.262 0.217 -0.116

-0.472 0.055 -0.479 -0.398 0.241 -0.822

0.253 0.636 0.078 0.062 0.280 0.114

0.381 0.677 0.250 0.095 0.227 0.166
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Chapter 4 Appendix B3 continued

meanH_L3_m sdH_L1_m sdH_L2_m sdH_L3_m roughness_L1_m

0.530 0.216 0.295 0.667 0.149

0.429 0.091 0.624 0.489 0.010

0.874 0.295 0.394 0.826 0.056

0.246 -0.007 -0.730 0.212 -0.122

0.055 -0.092 -0.715 0.116 -0.123

-0.051 -0.266 0.194 0.023 -0.250

-0.025 -0.231 0.241 0.053 -0.220

0.043 -0.135 0.414 0.140 -0.103

0.178 0.026 0.650 0.273 0.048

0.445 0.184 0.693 0.502 0.071

0.853 0.199 0.392 0.799 -0.033

0.865 0.243 0.308 0.954 0.031

0.115 0.731 0.330 0.198 0.795

0.074 0.217 0.359 0.102 0.257

-0.174 0.171 0.864 0.074 0.256

0.642 0.264 0.441 0.634 0.028

0.619 0.340 0.157 0.711 0.157

-0.107 0.396 0.484 0.093 0.549

0.560 0.275 0.734 0.649 0.149

0.245 0.453 0.488 0.376 0.622

-0.146 0.099 0.440 0.018 0.573

-0.095 -0.405 0.059 -0.141 0.296

-0.351 0.240 0.324 -0.134 0.609

0.155 0.139 0.448 0.253 0.267

0.183 0.706 0.282 0.242 0.573

-0.265 -0.144 0.484 -0.071 0.004

1.000 0.197 0.011 0.878 -0.103

0.197 1.000 0.291 0.252 0.519

0.011 0.291 1.000 0.180 0.382

0.878 0.252 0.180 1.000 0.013

-0.103 0.519 0.382 0.013 1.000

-0.186 0.202 0.499 -0.009 0.503

0.721 0.271 0.121 0.704 0.013

0.183 0.802 0.331 0.250 0.596

-0.101 0.181 0.812 0.083 0.276

0.898 0.264 0.212 0.868 -0.052

0.639 0.234 -0.251 0.488 0.014

-0.023 -0.137 0.201 0.003 0.315

-0.134 -0.189 0.151 -0.090 0.404
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Chapter 4 Appendix B3 continued

roughness_L2_m roughness_L3_m vci_L1_m vci_L2_m vci_L3_m height_cv_m

0.229 0.406 0.194 0.230 0.393 0.209

0.399 0.382 0.109 0.484 0.533 -0.312

0.021 0.718 0.296 0.183 0.860 0.503

-0.498 0.160 -0.058 -0.645 0.105 0.667

-0.328 0.010 -0.117 -0.635 -0.069 0.229

0.301 -0.131 -0.265 0.243 0.053 -0.703

0.332 -0.093 -0.231 0.280 0.078 -0.709

0.450 0.016 -0.121 0.409 0.154 -0.700

0.504 0.195 0.051 0.545 0.310 -0.564

0.365 0.461 0.209 0.499 0.561 -0.199

0.069 0.669 0.188 0.225 0.860 0.355

0.078 0.678 0.245 0.184 0.874 0.391

0.342 0.264 0.714 0.127 0.157 0.291

0.418 0.072 0.294 0.690 0.118 -0.091

0.482 -0.029 0.221 0.811 0.061 -0.364

0.167 0.563 0.217 0.365 0.810 0.283

0.210 0.505 0.260 0.119 0.638 0.216

0.786 -0.053 0.330 0.514 0.013 -0.443

0.379 0.529 0.293 0.624 0.694 0.009

0.687 0.428 0.443 0.454 0.336 -0.048

0.778 -0.129 0.154 0.436 -0.076 -0.472

-0.035 -0.145 -0.089 -0.003 -0.183 0.055

0.758 -0.316 0.231 0.447 -0.286 -0.479

0.663 0.175 0.089 0.339 0.262 -0.398

0.104 0.321 0.969 0.232 0.217 0.241

0.566 -0.258 -0.091 0.645 -0.116 -0.822

-0.186 0.721 0.183 -0.101 0.898 0.639

0.202 0.271 0.802 0.181 0.264 0.234

0.499 0.121 0.331 0.812 0.212 -0.251

-0.009 0.704 0.250 0.083 0.868 0.488

0.503 0.013 0.596 0.276 -0.052 0.014

1.000 -0.032 0.163 0.560 -0.049 -0.454

-0.032 1.000 0.299 -0.016 0.744 0.460

0.163 0.299 1.000 0.256 0.227 0.196

0.560 -0.016 0.256 1.000 0.101 -0.384

-0.049 0.744 0.227 0.101 1.000 0.507

-0.454 0.460 0.196 -0.384 0.507 1.000

0.065 0.043 0.234 0.173 -0.069 -0.103

0.132 -0.148 0.191 0.179 -0.185 -0.156
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cwd_volume_m numberOfCWD_m

0.151 0.054

0.113 0.029

0.038 -0.079

-0.153 -0.148

-0.106 -0.090

0.038 0.043

0.047 0.051

0.088 0.071

0.142 0.086

0.114 0.004

0.035 -0.076

0.048 -0.036

0.156 0.130

0.070 0.109

0.137 0.142

-0.014 -0.129

-0.010 -0.070

0.037 0.137

0.112 0.015

0.169 0.148

0.253 0.381

0.636 0.677

0.078 0.250

0.062 0.095

0.280 0.227

0.114 0.166

-0.023 -0.134

-0.137 -0.189

0.201 0.151

0.003 -0.090

0.315 0.404

0.065 0.132

0.043 -0.148

0.234 0.191

0.173 0.179

-0.069 -0.185

-0.103 -0.156

1.000 0.900

0.900 1.000



TLS ULS Fusion TLS ULS Fusion TLS ULS Fusion

meanH 0.286 0.135 -0.043 0.543 -0.173 0.113 0.212 0.064 -0.328

(0.290) (0.301) (0.193) (1.554) (1.442) (0.867) (0.304) (0.303) (0.211)

skewH 0.551* 0.305* 0.243 0.481 -0.268 0.111 0.195 0.005 -0.269

(0.225) (0.153) (0.180) (1.198) (0.973) (0.744) (0.226) (0.161) (0.191)

vci_5m -0.108 -0.205** -0.084 0.734 0.793 0.429 -0.066 -0.045 0.014

(0.081) (0.072) (0.091) (0.518) (0.674) (0.478) (0.076) (0.078) (0.088)

canopy_roughness -0.137 -0.194 -0.098 -0.218 -0.414 -0.359 -0.255* -0.352*** -0.205

(0.134) (0.113) (0.143) (0.425) (0.372) (0.386) (0.118) (0.102) (0.128)

vlayer_L1 0.215 -0.176 -0.132 0.13 0.082 -0.153 0.02 0.131 -0.045

(0.122) (0.183) (0.106) (0.449) (0.533) (0.399) (0.112) (0.142) (0.106)

vlayer_L2 -0.276* 0.021 -0.137 -0.655 0.042 -0.141 -0.03 -0.082 0.077

(0.119) (0.167) (0.126) (0.439) (0.541) (0.422) (0.105) (0.127) (0.113)

meanH_L1 0.253** -0.019 -0.018 0.783* 0.388 0.227 0.141 -0.015 -0.180*

(0.091) (0.093) (0.080) (0.381) (0.384) (0.260) (0.094) (0.094) (0.085)

vci_L2 0.291* 0.237* 0.181 0.426 0.339 0.825 0.202 0.12 -0.009

(0.140) (0.111) (0.147) (0.654) (0.600) (0.676) (0.135) (0.108) (0.143)

vci_L3 -0.133 0.037 0.077 0.141 0.66 0.44 -0.066 0.092 0.392*

(0.279) (0.301) (0.182) (1.414) (1.418) (0.806) (0.276) (0.286) (0.185)

height_cv -0.284 -0.15 -0.19 -0.322 -0.197 0.189 -0.018 -0.06 -0.094

(0.154) (0.214) (0.120) (0.745) (0.988) (0.557) (0.155) (0.192) (0.118)

cwd_volume -0.08 0.256** 0.177* -0.05 0.215 0.264 0.05 0.141 0.142

(0.089) (0.097) (0.088) (0.404) (0.344) (0.387) (0.082) (0.090) (0.091)

Intercept 1.375*** 1.387*** 1.374*** -2.078*** -2.095*** -1.913*** 1.485*** 1.482*** 1.475***

(0.148) (0.142) (0.162) (0.358) (0.462) (0.319) (0.092) (0.087) (0.110)

Marginal R2 0.162 0.152 0.113 0.264 0.286 0.264 0.122 0.218 0.158

Conditional R2 0.166 0.156 0.115 0.483 0.500 0.483 0.128 0.228 0.164

Notifications *p < 0.05,     **p < 0.01,     ***p < 0.001 

Independent 

variables

Chapter 4 Appendix B4. Model summary of the relationship between LiDAR 

derived vegetation structural metrics (independent variables) and individual 

species of reptile and amphibian abundance(dependent variables).

Dependent variables

Boulengers_Skink Common_Dwarf_Skink Delicate_Skink



meanH

skewH

vci_5m

canopy_roughness

vlayer_L1

vlayer_L2

meanH_L1

vci_L2

vci_L3

height_cv

cwd_volume

Intercept

Marginal R2

Conditional R2

Notifications

Independent 

variables

Chapter 4 Appendix B4 continued

TLS ULS Fusion TLS ULS Fusion TLS ULS Fusion

1.209 0.78 -0.225 2.480* 1.728 1.024 2.744 -0.217 -0.106

(1.428) (1.129) (0.773) (1.020) (1.049) (0.653) (1.953) (1.704) (0.965)

0.665 0.252 -0.291 2.554*** 0.991* 1.396** 1.09 -0.749 -0.794

(0.988) (0.558) (0.622) (0.732) (0.484) (0.512) (1.302) (0.854) (0.934)

-0.151 -0.261 -0.081 -0.41 -0.136 -0.591* -0.15 0.464 0.083

(0.295) (0.259) (0.280) (0.284) (0.271) (0.267) (0.408) (0.425) (0.396)

-0.166 -0.226 -0.213 -0.121 -0.483 -0.004 -0.161 0.166 -0.109

(0.440) (0.331) (0.369) (0.427) (0.389) (0.361) (0.602) (0.422) (0.559)

0.034 0.289 -0.153 0.507 0.441 0.189 0.308 -0.6 -0.141

(0.431) (0.463) (0.423) (0.402) (0.526) (0.348) (0.593) (0.670) (0.539)

0.238 0.069 0.441 -0.394 -0.023 -0.317 0.291 -0.008 0.273

(0.368) (0.396) (0.331) (0.359) (0.440) (0.337) (0.495) (0.529) (0.444)

-0.025 -0.324 -0.354 1.012** 0.379 0.228 -0.293 0.057 -1.109*

(0.361) (0.381) (0.304) (0.367) (0.332) (0.269) (0.508) (0.390) (0.439)

0.225 0.029 -0.214 1.264** 0.319 0.921* 0.369 -0.715 -0.377

(0.595) (0.360) (0.399) (0.489) (0.358) (0.426) (0.715) (0.477) (0.588)

-0.75 -0.409 0.642 -1.943* -0.951 -0.58 -2.733 -0.168 -0.296

(1.334) (1.040) (0.655) (0.932) (1.023) (0.544) (1.767) (1.506) (0.806)

0.435 0.448 0.005 -0.199 -0.069 -0.4 1.6 0.244 0.828

(0.744) (0.668) (0.439) (0.603) (0.694) (0.436) (0.916) (0.857) (0.519)

-0.245 0.019 0.339 -0.478 -0.307 -0.431 -0.648 0.313 0.554

(0.404) (0.391) (0.373) (0.346) (0.392) (0.346) (0.622) (0.461) (0.468)

-1.703*** -1.562*** -1.595***

-

1.619*** -1.436*** -1.404*** -2.516*** -2.038*** -2.441***

(0.371) (0.236) (0.242) (0.362) (0.346) (0.318) (0.589) (0.379) (0.522)

0.035 0.048 0.062 0.235 0.110 0.130 0.133 0.086 0.196

0.079 0.116 0.144 0.330 0.164 0.197 0.219 0.180 0.338

*p < 0.05,     **p < 0.01,     ***p < 0.001 

Dependent variables

Jacky_Dragon Shingleback Smooth_Toadlet



meanH

skewH

vci_5m

canopy_roughness

vlayer_L1

vlayer_L2

meanH_L1

vci_L2

vci_L3

height_cv

cwd_volume

Intercept

Marginal R2

Conditional R2

Notifications

Independent 

variables

Chapter 4 Appendix B4 continued

TLS ULS Fusion TLS ULS Fusion TLS ULS Fusion

1.807 2.233* 0.134 0.969 -0.033 0.188 -0.407 -0.03 -0.102

(0.972) (0.998) (0.552) (0.608) (0.680) (0.405) (0.371) (0.358) (0.236)

1.698* 1.508** 0.615 0.775 -0.209 0.136 -0.181 0.13 0.031

(0.755) (0.546) (0.506) (0.443) (0.328) (0.322) (0.291) (0.196) (0.214)

0.186 -0.198 0.056 -0.357* 0.174 -0.453** 0.018 -0.104 0.017

(0.263) (0.306) (0.247) (0.156) (0.159) (0.165) (0.100) (0.085) (0.105)

0.660* 0.215 0.609* 0.104 0.211 0.259 -0.064 -0.155 -0.025

(0.291) (0.244) (0.256) (0.190) (0.180) (0.184) (0.123) (0.107) (0.121)

0.791* 0.636 0.679* -0.578** -0.398 -0.527** 0.232 0.294 0.08

(0.368) (0.486) (0.303) (0.205) (0.319) (0.202) (0.135) (0.154) (0.122)

-0.548 -0.356 -0.478 -0.14 -0.253 -0.167 -0.216 -0.384** -0.162

(0.334) (0.357) (0.336) (0.188) (0.263) (0.186) (0.122) (0.140) (0.122)

0.357 -0.189 -0.3 0.25 0.06 0.175 0.057 -0.071 -0.017

(0.302) (0.314) (0.225) (0.171) (0.213) (0.137) (0.117) (0.118) (0.092)

-0.073 0.678 -0.275 0.44 -0.389 0.288 -0.115 0.131 -0.027

(0.412) (0.358) (0.379) (0.256) (0.224) (0.237) (0.173) (0.124) (0.161)

-1.801 -2.660** -0.208 -0.957 0.021 -0.327 0.518 0.092 0.165

(0.944) (0.991) (0.494) (0.550) (0.631) (0.351) (0.337) (0.328) (0.205)

-0.272 0.794 -0.713* 0.23 -0.162 0.06 -0.475** -0.222 -0.253

(0.482) (0.632) (0.319) (0.333) (0.426) (0.274) (0.183) (0.223) (0.137)

-0.272 0.183 -0.173 0.318 0.126 0.041 0.078 0.14 0.195

(0.243) (0.282) (0.299) (0.175) (0.220) (0.225) (0.092) (0.117) (0.104)

-1.062** -0.998** -0.960** -0.277 -0.202 -0.197 0.954*** 0.955*** 0.959***

(0.400) (0.369) (0.352) (0.168) (0.182) (0.159) (0.093) (0.083) (0.088)

0.217 0.242 0.216 0.318 0.190 0.244 0.163 0.239 0.167

0.243 0.273 0.249 0.381 0.230 0.300 0.180 0.263 0.185

*p < 0.05,     **p < 0.01,     ***p < 0.001 

Spotted_Grass_Frog Three_toed_Skink Unidentified_Skink

Dependent variables
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